Дипломная работа: Решение задач на экстремум
- изучение элементарных (геометрических и алгебраических) методов решения задач на экстремумы;
- изучение применения методов математического анализа к решению задач на экстремумы;
- отбор теоретического материала, доступного для понимания школьниками;
- разработка факультативных занятий по изучению данной темы.
В первой главе дипломной работы рассматриваются история задач на экстремум, и различные методы решения задач на экстремумы.
Вторая глава дипломной работы посвящена изучению данной темы в школе с применением дифференцированного подхода: вводится понятие дифференциации и целесообразность использования дифференцированного подхода в обучении. Более подробно в работе рассмотрена уровневая дифференциация.
Далее в дипломной работе проведена методика обучения решению задач на экстремумы и,в частности, анализ изложения темы «задачи на экстремум» в школьных учебниках различных авторов. Были рассмотрены учебники под редакцией: Алимова Ш.А., Александрова А.Д., Погорелова А.В., Колмогорова А.Н., Башмакова М.И., Мордковича А.Г., Дорофеева Г.В., Виленкина Н.Я..
Третья глава диплома посещена разработке цикла факультативных занятий на тему: «Решение задач на экстремум», с применением дифференцированного подхода.
В заключении подведены итоги проведенной работы.
Глава 1. Методы решения задач на экстремумы
§1 История развития задач на экстремумы
Экстремальными задачами человек интересуется с античных времен. В Древней Греции уже давно (во всяком случае до VI века до н.э.) знали об экстремальных свойствах круга и шара: среди плоских фигур с одинаковым периметром наибольшую площадь имеет круг (среди пространственных фигур с одинаковой площадью поверхности (решение изопериметрической экстремальной задачи); шар имеет максимальный объем (решение изопифанной экстремальной задачи). История сохранила легенду о следующей самой древней экстремальной задаче, известной как задача Дидоны. Финикийская царевна Дидона (IX век до н.э.) решила организовать поселение на берегу понравившегося ей залива в Северной Африке. Она уговорила вождя местного племени отдать ей клочок земли, который можно охватить воловьей шкурой. Воины Дидоны разрезали шкуру на тонкие полоски, и Дидона охватила ремнем, составленным из этих полосок, участок земли на берегу залива. Так возник город Карфаген. Задача Дидоны состоит в указании формы границы участка, имеющей заданную длину, при которой площадь участка максимальна. Если знать экстремальное свойство круга, то решение получается немедленно: граница участка представляет часть окружности, имеющей заданную длину. Экстремальными задачами занимались многие античные ученые (Евклид, Архимед, Аристотель и др.). Известна следующая задача Евклида (IV век до н.э.): в заданный треугольник ABC вписать параллелограмм ADEF наибольшей площади. Нетрудно доказать, что решением этой задачи является параллелограмм, вершины D, E, F которого делят соответствующие стороны треугольника пополам.
После гибели античной цивилизации научная жизнь в Европе стала возрождаться только в XV веке. Задачи на экстремумы оказались среди тех, которыми интересовались лучшие умы того времени. Если в античные времена задачи на экстремумы исследовались только геометрическими методами и каждая задача для своего решения требовала специфического приема, то в XVII веке появились общие методы изучения задач на экстремумы, которые привели к созданию дифференциального и интегрального исчислений. Первые элементы математического анализа были созданы И. Кеплером (1615 год), который так описывает появление своего открытия: "Мне как хорошему хозяину следовало запастись вином. Я купил его несколько бочонков. Через некоторое время пришел продавец - измерить вместимость бочонков, чтоб назначить цену на вино. Для этого он опускал в каждый бочонок железный прут и, не прибегая ни к какому вычислению, немедленно объявлял, сколько в бочке вина". После размышлений Кеплер открыл секрет такого простого способа измерения объема бочек. Оказалось, что бочары за долгую историю научились изготавливать бочки такой формы, при которой они имели наибольший объем при заданной длине мокрой части прута. А поскольку в окрестности максимума значения функции изменяются мало (в этом суть открытия И. Кеплера), то торговец вина почти не ошибался при объявлении объема бочки по одному измерению.
Открытое И. Кеплером основное свойство экстремумов было затем оформлено в виде теоремы сначала П. Ферма (для многочленов), потом И. Ньютоном и Г. В. Лейбницем для произвольных функций и носит теперь название теоремы Ферма, согласно которой в точке экстремума x0 непрерывной функции f (x) производная функции равна нулю:
С тех пор исследование функций с помощью анализа бесконечно малых величин стало одним из мощнейших математических методов и привело к созданию современного математического анализа.
§2 Способы решения задач на экстремумы
Различны и многообразны приёмы и методы решения задач на экстремумы, как аналитические (перебора, оценки, неравенств и др.) так и геометрические (преобразование плоскости, оценка, перебор…). Каждый метод по-своему уникален и неповторим. Эти приёмы можно отнести к элементарным, т.к. они не предполагают применения математического анализа, а ограничиваются алгебраическим или геометрическим подходом к решению задачи на экстремум. Каждый их таких элементарных приемов является мостиком к решению не большого класса задач на экстремум, но методически для нас важен тем, что актуализирует знания учащихся из области алгебры или геометрии. Кроме того, применение этих методов для ряда задач будет более рационально, чем использование инструментов математического анализа, ибо незачем "стрелять из пушки по воробьям".
В отличии от элементарных приёмов, использование производной даёт нам метод действительно универсальный. Который можно применять для решения всего этого широкого спектра задач.
В этом разделе рассмотрены основные методы решении задач на экстремумы и их применение при решении конкретных задач.
2.1 Элементарные приемы решения задач на экстремумы
Геометрический подход к решению задач
Метод преобразования плоскости
В качестве одного из основных методов решения геометрических задач на экстремумы используется метод преобразования плоскости. Суть метода заключается в следующем.
Пусть требуется найти экстремум элемента х фигуры F, однозначно определенного элементами x,аi,i = 1,2,...,n.
Метод нахождения экстремума:
1) Элементу х зададим определенное значение х = С и решим задачу на построение фигуры Fпо заданным элементам х и аi.
2) Решив эту задачу, считаем элемент с перемещением. Затем, применяя те или иные преобразования плоскости, замечаем те особенности, которые возникают при достижении элементом х максимального или минимального значения.
Выделение указанной особенности позволяет сделать заключение об экстремуме элемента х фигуры F.
Посмотрим применение метода при решение конкретной задачи.