Дипломная работа: Решение задач на экстремум

Пример 1:

Примером может послужить такая задача.

Расстояние от пункта А до В 4 км, а от В до С в двое больше. Какое наибольшее и наименьшее расстояние может быть от пункта А до пункта С.

Решение:

Расстояние АС зависит от места расположения точки С. Так как расстояние ЕС постоянное, то точка С принадлежит точкам окружности с

R = BC, В - центр. Легко заметить какие граничные значения может принимать АС,4 = АС2 < AСi <АВ + BCi= 12.

Отсюда, наибольшее: [АСi] = 12км;

наименьшее: [АСi ] = 4 км.

Искомыми точками Сi являются концы диаметра длиной 16 км с центром окружности в точке В.

Пример 2:

На озере, имеющем форму круга, расположен объект длиной ОА. В каком месте на берегу должен остановиться наблюдатель, чтобы наилучшим образом рассмотреть объект ОА (О - центр круга)?

Решение:

Пусть М - произвольная точка окружности k. Ставится задача оценить величину угла AMiO.

Если Mk, а С МiА и МiА ОС, то

0° < АМiO < AM'О так как ОС ≤ ОА.

Задача имеет два решения:

max(AMiO) =AM'О= AM'iО,

где ОА M'M'i

Пример 3:

Рассмотрим еще задачу об экономном расходовании материалов. Попытаемся установить, для какой крыши (двускатной или четырехскатной) потребуется больше кровельного материала.

Решение:

Будем считать, что оба ската двускатной крыши наклонены к горизонтальной плоскости под углом φ, скаты 1 и 2 четырехскатной крыши – под тем же углом φ, а 3 и 4 – под углом α. При этих предположениях и указанных на чертеже размерах площадь двускатной крыши будет равна , а четырехскатной - . Для сравнения этих площадей рассмотрим разность их . Здесь b>0, m>0, 0<α<900 и 0<φ<900. Поэтому при α<φ получим S2-S1<0, при α=φ будем иметь S2-S1=0, а при α>φS2-S1<0. Следовательно, если все скаты как двускатной, так и четырехскатной крыш будут одинаково наклонены к горизонтальной плоскости, то кровельного материала понадобится одинаково на обе крыши. Если же скаты 3 и 4 четырехскатной крыши будут иметь больший угол наклона, чем скаты 1 и 2, то для четырехскатной крыши кровельного материала понадобится больше, чем для двускатной, а при меньшем угле – меньше.

Алгебраический подход к решению задач

Встречаются такие задачи на отыскание наибольшей и наименьшей величины, которые оптимальнее всего решать методами элементарной математики.

Использование квадратичной функции

При решении задач этим методом мы будем опираться на следующую теорему:

К-во Просмотров: 881
Бесплатно скачать Дипломная работа: Решение задач на экстремум