Дипломная работа: Системы эквивалентные системам с известными качественными свойствами решений
в том случае, когда уже построена некоторая сложная дифференциальная система, встаёт задача о замене этой системы ей качественно эквивалентной, но удобной для дальнейшего исследования.
Для решения этих задач было бы разумно с одной стороны, иметь набор соответствующих модельных систем, т.е. достаточно богатый набор качественно различных дифференциальных систем, а с другой стороны, обладать математическим аппаратом, позволяющим устанавливать качественную эквивалентность модельной системы и исследуемой дифференциальной системы.
Качественное поведение решений дифференциальных систем во многом определяется наличием и количеством периодических решений, их начальными условиями.
Для выяснения вопросов о наличии и количестве периодических решений периодических систем наиболее часто используется отображение Пуанкаре и метод отражающей функции. Ниже будут приведены некоторые сведения о них.
Значительное число работ учёных всех стран мира посвящено качественному исследованию автономных дифференциальных систем небольших размерностей.
Неавтономные дифференциальные системы даже не высоких размерностей изучаются менее интенсивно из-за отсутствия методик их прямого исследования.
Получить сведения, о качественном поведении решений исследуемой неавтономной дифференциальной системы, возможно, установив её эквивалентность, в смысле совпадения отражающих функций, дифференциальной системы, стационарной или нестационарной, качественный портрет решений которой известен.
В данной работе рассматривается задача о построении дифференциальных систем, эквивалентных в смысле совпадения отражающих функций, системам с известным первым интегралом.
§1. Отображение Пуанкаре
Рассмотрим систему
Будем считать, что эта система удовлетворяет следующим условиям:
а) при всех задача Коши для системы имеет единственное решение , .
б) система периодична по , т.е. .
Чтобы не делать далее оговорок, будем считать также, что все решения системы существуют при
Отображение называют оператором или отображением сдвига вдоль решений системы [1]. Имеют место следующие свойства оператора сдвига вдоль решений системы .
.
Каждое из этих свойств вытекает из свойств функции .
Докажем, к примеру, свойство , которое равносильно тождеству
Для его доказательства отметим, что в силу периодичности системы функция , как и функция является решением системы . При эти решения совпадают. Поэтому они обязаны совпадать и при всех , в том числе и при т.е. должно иметь место тождество , а с ним и свойство .
Отображение при любом называют отображением за период, или отображением Пуанкаре для системы . Областью определения отображения Пуанкаре является множество всех тех для которых решение системы определено при всех .
Общий принцип.
Для того, чтобы продолжимое на решение системы было периодическим, необходимо и достаточно, чтобы точка была неподвижной точкой отображения Пуанкаре .
Необходимость очевидным образом следует из периодичности решения .
Достаточность. Пусть есть неподвижная точка отображения за период . Это означает, что