Дипломная работа: Системы эквивалентные системам с известными качественными свойствами решений
.
Теорема доказана.
Таким образом, если при каком-то удаётся отыскать отображение за период , то из уравнения будут найдены начальные данные всех периодических решений.
Создаётся впечатление, что отображение Пуанкаре можно найти только зная общее решение дифференциальной системы.
Для отыскания отображения Пуанкаре (отображение за период) можно использовать некоторые вспомогательные функции, которые не совпадая с общим решением во всей области существования решения, совпадают с ним на гиперплоскостях, отличающихся на период. Если такая функция будет найдена, то будет найдено и отображение за период.
В.И. Мироненко в качестве такой функции использовал функцию [2,3], которую назвал отображающей функцией. При известной отображающей функции периодической дифференциальной системы отображение за период определяется формулой
В дальнейшем будем полагать , где половина периода.
Приведём теперь известные факты об отражающей функции [3,4].
§2. Общие сведения об отражающей функции
Рассмотрим систему
,
cчитая, что правая часть которой непрерывна и имеет непрерывные частные производные по . Общее решение в форме Коши обозначим через ). Через обозначим интервал существования решения .
Пусть
Отражающей функцией системы назовём дифференцируемую функцию , определяемую формулой
Для отражающей функции справедливы свойства:
для любого решения системы верно тождество
для отражающей функции любой системы выполнены тождества
дифференцируемая функция будет отражающей функцией системы тогда и только тогда, когда она удовлетворяет системе уравнений в частных производных
и начальному условию
Совокупность условия и начального условия назовём основным соотношением для отражающей функции.
Как известно, в большинстве случаев система дифференциальных уравнений не может быть проинтегрирована в элементарных функциях или в квадратурах. Это вынуждает исследовать решения системы по самим дифференциальным уравнениям.
Знание отражающей функции системы позволяет решать вопросы существования, количества и начальные данные периодических решений системы.
Поскольку у разных дифференциальных систем может быть одна и та же отражающая функция, то с помощью отражающей функции можно заменить одну дифференциальную систему на качественно ей эквивалентную и более простую другую дифференциальную систему.