Дипломная работа: Системы эквивалентные системам с известными качественными свойствами решений
Функцию будем называть стационарным первым интегралом системы , если она не зависит от и является первым интегралом системы .
Теорема 4.1. Для того, чтобы система с раз дифференцируемой по правой частью имела в невырожденный стационарный первый интеграл, необходимо выполнение тождества
где , компоненты вектор-функции .
Доказательство. Пусть стационарный первый интеграл системы . Тогда согласно лемме 4.2 должно выполняться тождество
Это означает, что при каждом фиксированном функции линейно зависимы на интервале их существования. Поэтому вронскиан этих функций (левая часть тождества