Дипломная работа: Собственные колебания пластин

Если корни характеристического уравнения чисто мнимые, т.е. . Общим решением уравнения (1.3.1) будет

(1.3.6)

.

Если предположить, что характеристическое уравнение имеет равные корни , то одно частное решение будет иметь вид

.

Второе частное решение будет

.

Тогда общее решение уравнения (1.3.1) можно представить в виде

(1.3.7)

.

Глава II Нахождение функции, описывающей собственные колебания мембраны

2.1 Основные определения

В этой главе использованы следующие обозначения

· - частная производная функции по ;

· - производная функция одной переменной.

Мембраной называется плоская пластинка, не сопротивляющаяся изгибу и сдвигу. Мы будем рассматривать поперечные колебания мембраны, в которых смещение перпендикулярно к плоскости мембраны. Отклонение точек мембраны от плоскости xOy будем обозначать через функцию , которая зависит от координат точки ( x , y ) и от времени t . Вывод дифференциальных уравнений задач математической физики сопровождается целым рядом допущений как механических, так и геометрических. Так при выводе уравнения колебания прямоугольной мембраны мы пренебрегли квадратом частных производных

(2.1.1)

.

В результате получается следующее уравнение колебаний прямоугольной мембраны

.

В случае рассмотрения мембраны круглой формы полезно перейти к полярным координатам. Пусть мембрана в состоянии покоя занимает круг радиуса с центром в начале координат. Введем полярные координаты , . Уравнение границы круга будет при этом . Отклонение точек мембраны является теперь функцией полярных координат и и времени t :

.

Выражение для оператора в полярных координатах имеет вид

,

Тогда уравнение колебаний мембраны (2.1.1) перепишется в виде

(2.1.2)

.

В данной главе нам еще понадобится определение ортогональных функций в следующем виде:

Система функций называется ортогональной на интервале , если интеграл от произведения любых двух различных функций системы равен нолю: (). Это условие ортогональности отличается от обычного тем, что под интегралом содержится множитель , в таких случаях говорят об ортогональности с весом [1].

2.2 Собственные колебания прямоугольной мембраны

Процесс колебания плоской однородной мембраны описывается уравнением

(2.2.1)

(2.2.1)

Пусть в плоскости ( x , y ) расположена прямоугольная мембрана со сторонами b1 и b2 , закрепленная по краям. Ее колебание вызывается с помощью начального отклонения и начальной скорости.

Для нахождения функции , характеризующей отклонение мембраны от положения равновесия (прогиб), нужно решить уравнение колебаний при заданных начальных условиях

(2.2.2)

и граничных условиях

(2.2.3)

.

Краткое решение задачи (2.2.1) – (2.2.3) приведено в книге [8], где были получены следующие результаты.

Функция имеет вид

,

где - собственные функции, соответствующие собственным значениям (полученным в результате применения метода Фурье) и определяющиеся формулой

.

К-во Просмотров: 340
Бесплатно скачать Дипломная работа: Собственные колебания пластин