Дипломная работа: Сравнительный анализ численных методов
x>0.001
x<0.001
Необходимая точность достигнута при n=4, т.е. на 4-й итерации.
Так как заданная точность достигнута, то процесс можно прекратить.
Теперь строим график функции x=, т.е. последовательность xn , стремящаяся к x* и условием сходимости здесь является (рисунок 2.7).
Рисунок 2.7 - График функции для исследуемой функции
2.3 Метод хорд
2.3.1 Общие сведения
Как и в методе хорд, функция f (x) должна удовлетворять на отрезке [a, b] следующим условиям:
1) существование производных 1-го и 2-го порядков;
2) f ’ (x) 0;
3) производные 1-го и 2-го порядков знакопостоянны на отрезке [a, b].
За начальное приближение x0 принимается один из концов отрезка [a, b], где значение функции имеет такой же знак, что и 2-я производная. За x1 выбирается второй край отрезка. В данном методе процесс итераций состоит в том, что в качестве приближений корню уравнения принимаются значения х0 , х1 ,… точек пересечения хорды с осью абсцисс (рисунок 2.8).
Рисунок 2.8 - Метод хорд
Формула для n-го приближения имеет вид:
Итерационный процесс останавливают при выполнении условия ; где ε - заданная точность.
2.3.2 Решение нелинейного уравнения методом хорд
1. Дано уравнение
tg(0.36*x +0.4) =x2 .
Решить его методом хорд с точностью решения=0,001.
Как в предыдущем методе для нахождения корня исследуем функцию
.
Выбираем концы отрезка: a= -1; b = 0. График функции на этом отрезке представлен на рисунке 2.9
Рисунок 2.9 - График функции на выбранном отрезке
По данным из п.2.2.2 за x0 выбираем тот конец отрезка, который совпадает со знаком 2-ой производной. А за x1 второй конец отрезка.