Дипломная работа: Сравнительный анализ численных методов
x>0.001
x<0.001
Необходимая точность достигнута при n=9, т.е. на 8-й итерации.
Так как заданная точность достигнута, то процесс можно прекратить.
Теперь строим график функции x=, т.е. последовательность xn , стремящаяся к x* и условием сходимости здесь является (рисунок 2.12).
Рисунок 2.12 - График функции для исследуемой функции.
2.4 Вывод
Судя по графикам и сравнивая эти два метода, можно сделать вывод, что искомый корень находится в промежутке между найденными приближенными корнями, т.е. для функции на отрезке [-0.48059; - 0.48028], а для для функции на отрезке [1,0627; 1,06289]
На рисунках 2.12, 2.13 приведены графики функций на данных отрезках.
Рисунок 2.12 - График функции
Рисунок 2.13 - График функции
Анализируя эти два метода, можно отметить, что в методе хорд, чтобы достичь заданной точности, необходимо выполнять больше итераций, чем в методе касательных. Так, в первом примере, в методе хорд мы выполнили 6 итераций, а в методе касательных всего 4; во втором примере в методе хорд мы выполнили 8 итераций, а в методе касательных всего 4. С другой стороны, в методе хорд не нужно вычислять производную функции на каждом шаге. Таким образом, как мне кажется, метод касательных является более трудоемким.
2.5 Метод простых итераций
2.5.1 Общие сведения
Пусть дано уравнение f (x) =0, (1)
Метод простых итераций уточнения корней уравнения (1) состоит в замене этого уравнения эквивалентным ему уравнением
(2)
и построении последовательности
(3),
где
,
Например
x0 = (а + b) /2
Если не удается выразить х из уравнения (1), то эквивалентное уравнение и эквивалентную функцию можно построить, например, так:
Последовательность (3) называют методом простых итераций уточнения корней уравнения (1).
Теорема (достаточное условие сходимости метода простых итераций). Пусть функция в эквивалентном уравнении ( 2) определена и дифференцируема на отрезке Тогда, если существует число q такое, что