Дипломная работа: Сравнительный анализ численных методов

Приравнивая эти значения, для определения m получим СЛАУ.

В двух крайних точках:

Если функция задана в виде таблиц, то для вычисления производных используеться результаты, получаемые при численном диференцировании, порядок точности которых не ниже 3-ей степени.

3.4 Использование интерполяции на практике

3.4.1 Интерполяция с помощью многочлена Лагранжа

Задание: найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравносторонних узлах таблицы. Дана функция:

Составляем таблицу узлов интерполяции:

Поскольку n=5 строим интерполяционный многочлен L5 (x):

L5 (x) =P50 *f (x0 ) +P51 *f (x1 ) + P52 *f (x2 ) + P53 *f (x3 ) + P54 *f (x4 ) + P55 *f (x5 )

В результате получаем многочлен:

L5 (x) = 1.049*10-3 *x5 +5.4373*10-3 *x4 +0.027*x3 - 0,936*x2 + 0,424*x +0.42278, X= - 0.48051

Подставляя заданное значение аргумента, получаем ответ:

L5 (x) = 0,00011

При подстановки того аргумента в заданную функцию, получаем такой же результат:

f (-0.48051) =0.00011

3.4.2 Обратная интерполяция

Задание: найти приближенное значение корня данном значении функции с помощью интерполяционного многочлена Лагранжа, если функция задана в равносторонних узлах таблицы.

Дана функция:

Составляем таблицу узлов интерполяции:

i Xi Yi
0 -0,7 -0.34091
1 -0,5 -0.02638
2 -0,3 0.21059
3 -0,1 0.37098
4 0,1 0.4559

Поскольку n=4 строим интерполяционный многочлен L4 (y):

L4 (y) =P40 *x0 +P41 *x1 + P42 *x2 + P43 *x3 + P44 *x4

К-во Просмотров: 598
Бесплатно скачать Дипломная работа: Сравнительный анализ численных методов