Дипломная работа: Теория вероятностей на уроках математики
Пример 7.
Круговая мишень (рис 14) состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле – 0,15, во вторую – 0,23, в третью - 0,17. Найти вероятность промаха.
Решение. Обозначим А-промах при выстреле, тогда А-попадание. Тогда А=А1+А2+А3, где А1, А2, А3-непопадание соответственно в первую, вторую, третью зоны.
По теореме 1 Р(А) =Р(А1) +Р(А2) +Р(А3) =0,15+0,23+0,17=0,55, откуда Р(А) =1-Р(А) =0,45
В ряде случаев приходится вычислять вероятность суммы событий, которые могут быть совместными.
Теорема 2. для любых двух событий справедливо равенство: Р(А+В) =Р(А) +Р(В) - Р(АВ) (2)
Доказательство. Событие А состоит из компонент А*В и А*В, а событие в из компонент А*В и А*В. Поэтому А+В=(АВ) +(АВ) +(АВ) +(АВ) =(АВ) +(АВ) +(АВ), и поскольку входящие в это положение компоненты попорио не пересекаются, то
Р(А+В) =Р(АВ) +Р(АВ) +Р(АВ) (3)
С другой стороны имеем Р(А) =Р(АВ) +Р(АВ); и Р(В) =Р(АВ) +Р(АВ), а потому P(A) +P(B) =2P(AB) +P(AB) +P(AB).
Сравнивая эти равенства с (3) получаем доказываемую формулу (2)
Для произвольного числа событий формула выглядит так: Р(∑Ai) = ∑P(Ai) - ∑P(Ai-Aj) + ∑P(AiAjAk)... . +(-1) n-1P(A1A2... An).
В частности при n=3 имеем: Р(А+В+С) =Р(А) +Р(В) +Р(С) - Р(АВ) - Р(АС) - Р(ВС) +Р(АВС).
§7. Теорема умножения вероятностей
Условная вероятность.
Второй основной теоремой теории вероятностей является терема умножения вероятностей.
Перед тем как излагать теорему умножения введем важное понятие: понятие о независимых и зависимых событиях.
Определение 1. событие А называется независимым от события В, если вероятность события А не зависит от того, произошло ли событие В, или нет.
Определение 2. событие А называется зависимым от события В, если вероятность события А является в зависимости от того, произошло ли событие В, или нет.
Примеры.
1) опыт состоит в бросании двух монет; рассматриваются события:
А-появления герба на первой монете
В-появление герба на второй монете
В данном случае вероятность события А не зависит от того, произошло ли событие В, или нет; событие А независимо от события В.
2) в урне два белых шара и один черный; два лица вынимают из урны по одному шару; рассматрива?