Дипломная работа: Теория вероятностей на уроках математики
{W1},{W2},... . {W6};
{W1,W2},{W1,W3},... . {W5,W6},{W1,W2,W3},... . .;
{W1,W2,W3,W4,W5,W6}= Ω
В этом примере алгебра и состоит из 2=64 событий. Если множества Ω состоит из N элементов, то число всех подмножеств равно 2N. Действительно, число последовательностей из 0 и 1 длины N равно 2N, а между такими последовательностями и подмножествами Ω можно установить взаимнооднозначное соответствие по следующему правилу: элемент с номером i из множества Ω включается в подмножество, соответствующее данной последовательности стоит 1.
Определение 4. числовая функция Р, определенная на классе событий И, называется вероятностью, если выполнимы следующие условия:
А1. не является алгеброй событий;
А2. Р(А) ≥0 для любого а АЄИ.
А3. Р(Ω) =1
А4. (аксиома конечной аудитивности)
Если А и В несовместимы, то Р(А+В) =Р(А) +Р(В).
Для решения задач, связанных с бесконечными последовательностями событий, требуется дополнить приведенные аксиомы следующей аксиомой непрерывности:
А5. для любой убывающей последовательности А1эА2э…. эАnэ…событий из И такой, что__Аn= ǿ имеет место равенство е1m Р(Аn) =0.
Укажите несколько простых свойств вероятности, которые непосредственно следуют из аксиом А2-А4. Из аксиом А3-А4 и равенства А+А= Ω следует, что Р(А) =1-Р(А).
Полагая здесь А= Ω, получим Р(ǿ) =0.
§6. Теоремы о вероятности суммы событий
Определение 1. несколько событий называются несовместимыми в данном опыте, если никакие два из них не могут появится вместе.
Примеры.
появление 1,2,4очков при бросании игральной кости;
попадание и промах при одном выстреле – несовместимые события.
Теорема 1. вероятность суммы двух несовместимых событий равна сумме вероятности этих событий:
Р(А+В) =Р(А) +Р(В) (1)
Докажем эту теорему для схемы случаев.
Пусть возможные исходы опыта сходятся к совокупности случаев. Для наглядности изобразим их в виде n точек.
mnAknB
... ... ... ... ... ... ... ... ... ... ... ... ... ...
n
Предположим, что из этих случаев m благоприятны событию А, а k событию В. Тогда Р(А) =mчn; P(B) =kчn.
Так как события А и В несовместны, то нет таких случаев, которые благоприятны m+k случаев И
Р(А+В) =m+kчn.
Подставим полученные выражения в формулу (1) получим тождество. Теорема доказана.