Дипломная работа: Теория вероятностей на уроках математики

Примеры:

5. выпадение более 6 очков при подбрасывании игрального кубика;

6. выпадение цифры и герба одновременно при подбрасывании одной монеты – невозможные события.

§3. Вероятностное пространство

Представим, что некоторый прямоугольник Е мы разрезали (рис 1) на n прямоугольных пронумерованных карточек еi(i=1,2,3,... .,n). допустим, после хорошей перестановки одну карточку наугад вытаскиваем из всей стопки. При такой операции:

· одно из событий "вытащена одна карточка" непременно произойдет;

· при одном испытании вытаскивание любой из карточек появляется в одном и только одном исход; например, если была вытащена карточка 17, т.е. произошло событие е17, то в это же время не могло произойти событие е5, состоящее в вытаскивании карточки с номером 5

e5
ei
e17
E1 E2 E3 E4 E5 E6

Рис 1. Рис. 2.

События ei, состоящие в появлении карточки с номером i (i=1,2,3,…. n), могут послужить примером элементарных событий, а прямоугольник е – примером пространства элементарных событий, связанных с реализацией испытания S – выталкиванием одной карточки после разреза прямоугольника на Е на маленькие прямоугольники и вытаскивания случайной карточки после тщательной перестановки.

Определение 1. Пространство элементарных событий (полная группа событий) множество событий таких, что в результате испытания обязательно должно произойти хотя бы одно из них и любые два из них несовместны.

Пространство элементарных событий Е, определенное бросанием игральной кости, представляет события, где еi выпало n очков (n=1,2,3,4,5,6)

Рассмотрим события (рис 2):

А-"выпало четное число очков"

В-"выпало не меньше 2 очков"

С-"выпало не больше 2 очков"

А произошло, если произошло одно из элементарных событий е2, е4, е6. Выразим это символом е2еА, е4еА, е6еА.

Тогда: е2

е3 е1

е4 = еВ, =еС

е5 е2

е6

Поскольку е2, е4, е6 есть некоторые из элементов

Пространства Е={е1, е2, е3, е4, е5, е6}, эту тройку удобно назвать подпространством (частью) пространства Е значит, событие А можно рассматривать как пространство ему благоприятствующих элементарных событий {е2; е3; е4; е5; е6}, событие С - как подпространство ему благоприятствующих элементарных событий {е1, е2}. Если ei не благоприятствует событию с-то пишут ei=A.

Реализация испытаний S однозначно определяет пространство элементарных событий Е. Любое случайное событие Н связанное с испытанием S, можно рассматривать как подпространство благоприятствующих этому событию элементарных событий пространства Е. Изобразить его можно некоторой фигурой, построенной из клеточек символи-

зирующих элементарные события, благоприятствующие событию Н.

Е1 Е2 Е3 Е4 Е5 Е6

Например, событие Н1-"выпало меньше трех очков"-может быть изображено одной заштрихованной фигурой (рис3), а событие Н6-"выпало больше 2 или меньше 5 очков" - двумя фигурами (рис 4).

Е1 Е2 Е3 Е4 Е5 Е6

§4. Операции над случайными событиями

п.1. Отношения между событиями.

Сравним следующие события: А - появление двух очков при бросании игральной кости., В-появление четного числа очков при бросании игральной кости.

Замечаем следующие соотношения между событиями, если произошло А, то тем самым произошло и В.

Событие А является частью события В состоит в осуществлении трех элементарных событий: "появление 2 очков", "появление 4 очков", "появление 6 очков", а событие А - одним из них – "появление двух очков".

Определение 1. Говорят, что событие А влечет за собой событие В (говорят так же, что В содержит, является следствием, включает А, А является частью В) и обозначают это символом АсВ (или ВэА), если все исходы, составляющие А, входят и в В.

К-во Просмотров: 341
Бесплатно скачать Дипломная работа: Теория вероятностей на уроках математики