Дипломная работа: Теория вероятностей на уроках математики
Какова вероятность выпадения шестерки, при подбрасывании такой кости?
Как известно вероятность выпадения шестерки при подбрасывании правильной игральной кости, равна 1ч6.
Допустим, провели n бросаний такой кости и определили, что шестерка выпала m раз. Отношение mчn назовем статистической частотой появления шестерки. При проведении серии таких испытаний, может случится, что
при подбрасывании кости n раз шестерка выпала m1раз; статистическая частота Р1=m1чn;
при подбрасывании кости n+1раз шестерка выпала m2раз: статистическая частота Р2=m2чn+1;
при подбрасывании кости Nраз шестерка выпала mN раз: статистическая частота РN=mNчN.
Заметим, что для статистических частот р1,р2,р3,…. рN будет характерна устойчивость: они будут с возрастанием числа испытаний сколь угодно близко сосредотачиваться около вероятности Р=1ч6.
Подбрасывая неправильную кость и определяя статистические частоты появления, например, шестерки, заметил такую же устойчивость этих частот, но эти частоты с возрастанием числа испытаний устойчиво будут сосредотачиваться около некоторого, в результате неправильности игральной кости нам неизвестно числа Р. Это неизвестное число в отношении статистических частот появления шестерки при подбрасывании неправильной игральной кости выступает как бы в роли 1ч6 в отношении статистических частот появления шестерки при подбрасывании правильной игральной кости. Будем считать это неизвестное число Р вероятностью выпадшей шестерки при бросании неправильной игральной кости. Для каждой неправильной игральной кости это Р будет разное.
Пусть m1чn; m2чn+1;... .; mNчN – статистическая частота наступления события А в некоторой серии испытаний, каждое из которых проводится в одинаковых условиях (например, подбрасывается одна и та же игральная кость с одинаковой высоты)
Определение 2. вероятностью события А называется то неизвестное число Р, около которого сосредотачиваются значения статистических частот наступления события А при возрастании числа испытаний.
Это – статистическое определение вероятности случайного события.
П.3. Геометрическое определение вероятности.
Пусть на плоскости задан круг и нем треугольник В. В круг на удачу "бросается точка". Как определить вероятность события Н, состоящего в том, что точка попадает в треугольник?
При решении этой задачи будем пользоваться следующем исходным положением: вероятность попасть в какую-либо часть круга пропорционально площади этой части.
Если площадь круга составляет n единиц площади, а площадь треугольника m единиц площади, то в силу пропорциональности Р(А) =mk единиц площади чnk единиц площади = mчn.
На конкретном примере можно увидеть, что геометрический подход к вероятности события не зависит от вида измерений геометрического пространства: важно только, чтобы пространство элементарных событий Е и пространство представляющее событие А, были одинакового вида и одинаковых измерений.
Пример
Пусть на плоскости задан круг и определен его сектор ВОС (рис11), <ВОС=α. Рассмотрим вероятности трех событий А1, А2, А3, состоящих в следующем: в круг на удачу бросается точка М. А1-"попадание М1 в сектор ВОС". На дугу окружности наугад бросается точка N. А2-"попадание N на дугу ВОС". На рисунок на удачу бросается вектор OS, начало которого закреплено в точке О.
А3-"попадание OS в угол α"
Пусть ОС=r - радиус круга. Тогдa:
Тот факт, что Р(А1) =Р(А2) =Р(А3), подтверждает вышеизложенное суждение и позволяет обобщить формулу (х):
если событие А состоит в попадании точки М на отрезок [α; β] при ее бросании наугад на отрезок [а; в] (рис.12), то
Р(А) = β - αчв-а;
если позиция А состоит в попадании вектором ОМ в угол α при бросании наугад, когда начало вектора закреплено в точке О (рис13), то Р(А) = αч2π (в радианах) = α ч360°(в градусах);
если событие А состоит в попадании точки М в пространство Т при бросании ее наугад в пространство S, то Р(А) =VтчVs
Геометрическая интерпретация вероятности события является важным средством подхода к расчету вероятностей сложных событий.
Определение 3. вероятностью случайного события А называется численная мера возможности наступления этого события при некотором испытании.
П.4. Аксиомотическое определение вероятности
Пусть Ω - произвольное пространство элементарных событий, а И – некоторый класс подмножеств множества Ω.
Класс подмножеств И называется алгеброй событий, если Ω в И и если А; ВЄИ, А+ВЄИ, А/ВЄИ при любом АЄИ, ВЄИ. Отсюда следует, что ǿ= Ω\ ΩЄИ. Наименьшей системой подмножеств, является алгеброй, очевидно являясь системой И={d, Ω }. Нетрудно проверить следующие утверждение. Если И – система всех подмножеств множества Ω, то и алгебра, если Ω-конечное множество, то система всех подмножеств будет так же конечным числом.
Пример.