Дипломная работа: Топологическая определяемость верхних полурешёток

Введение.

Дистрибутивная решётка является одним из основных алгебраических объектов. В данной работе рассматривается частично упорядоченное множество P ( L ) простых идеалов. Оно даёт нам много информации о дистрибутивной решётке L , но оно не может её полностью охарактеризовать. Поэтому, для того, чтобы множество P ( L ) характеризовало решётку L , необходимо наделить его более сложной структурой. Стоун [1937] задал на множестве P ( L ) топологию.

В этой работе рассматривается этот метод в несколько более общем виде.

Работа состоит из двух глав. В первой главе вводятся начальные понятия, необходимые для изучения данной темы. Во второй главе рассматриваются верхние полурешётки, а также множество простых идеалов с введенной на нём топологией.

Глава 1.

1. Упорядоченные множества.

Определение : Упорядоченным множеством называется непустое множество, на котором определено бинарное отношение , удовлетворяющее для всех следующим условиям:

1.Рефлексивность: .

2.Антисимметричность: если и , то .

3.Транзитивность: если и , то .

Если и , то говорят, что меньше или больше , и пишут или .

Примеры упорядоченных множеств:

К-во Просмотров: 295
Бесплатно скачать Дипломная работа: Топологическая определяемость верхних полурешёток