Дипломная работа: Топологическая определяемость верхних полурешёток
Рефлексивность отношения вытекает из свойства (1). Заметим, что оно является следствием свойства (4):
Если и
, то есть
и
, то в силу свойства (2), получим
. Это означает, что отношение
антисимметрично.
Если и
, то применяя свойство (3), получим:
, что доказывает транзитивность отношения
.
Применяя свойства (3), (1), (2), получим:
,
.
Следовательно, и
Если и
, то используя свойства (1) – (3), имеем:
, т.е.
По определению точней верхней грани убедимся, что
Из свойств (2), (4) вытекает, что и
Если и
, то по свойствам (3), (4) получим:
Отсюда по свойствам (2) и (4) следует, что
, т.е.
Таким образом, . ■
Пусть решётка, тогда её наибольший элемент
характеризуется одним из свойств:
1.
2.
.
Аналогично характеризуется наименьший элемент :
1.
2.
.
3. Дистрибутивные решётки.
Определение: Решётка называется дистрибутивной , если для
выполняется:
1.
2.