Дипломная работа: Топологическая определяемость верхних полурешёток
Рефлексивность отношения вытекает из свойства (1). Заметим, что оно является следствием свойства (4):
Если и , то есть и , то в силу свойства (2), получим . Это означает, что отношение антисимметрично.
Если и , то применяя свойство (3), получим: , что доказывает транзитивность отношения .
Применяя свойства (3), (1), (2), получим:
,
.
Следовательно, и
Если и , то используя свойства (1) – (3), имеем:
, т.е.
По определению точней верхней грани убедимся, что
Из свойств (2), (4) вытекает, что и
Если и , то по свойствам (3), (4) получим:
Отсюда по свойствам (2) и (4) следует, что
, т.е.
Таким образом, . ■
Пусть решётка, тогда её наибольший элемент характеризуется одним из свойств:
1.
2. .
Аналогично характеризуется наименьший элемент :
1.
2. .
3. Дистрибутивные решётки.
Определение: Решётка называется дистрибутивной , если для выполняется:
1.
2.