Дипломная работа: Топологическая определяемость верхних полурешёток
2. Множество всех действительных функций на отрезке и
означает, что для .
Определение: Цепью называется упорядоченное множество, на котором для имеет место или .
Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества . Изобразим каждый элемент множества в виде небольшого кружка, располагая выше , если . Соединим и отрезком. Полученная фигура называется диаграммой упорядоченного множества .
Примеры диаграмм упорядоченных множеств:
2. Решётки
Определение: Верхней гранью подмножества в упорядоченном множестве называется элемент из , больший или равный всех из .
Определение: Точная верхняя грань подмножества упорядоченного множества – это такая его верхняя грань, которая меньше любой другой его верхней грани. Обозначается символом и читается «супремум X».
Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.
Понятия нижней грани и точной нижней грани (которая обозначается и читается «инфинум») определяются двойственно. Также, согласно аксиоме антисимметричности упорядоченного множества, если точная нижняя грань существует, то она единственна.
Определение: Решёткой называется упорядоченное множество , в котором любые два элемента и имеют точную нижнюю грань, обозначаемую , и точную верхнюю грань, обозначаемую .
Примеры решёток:
1. Любая цепь является решёткой, т.к. совпадает с меньшим, а с большим из элементов .
2.
Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают , а наименьший элемент, то есть меньший или равный каждого элемента упорядоченного множества, обозначают .
На решётке можно рассматривать две бинарные операции:
- сложение и
- произведение
Эти операции обладают следующими свойствами:
1. , идемпотентность
2. , коммутативность
3. ,
ассоциативность
4. ,
законы поглощения
Теорема . Пусть - множество с двумя бинарными операциями , обладающими свойствами (1) – (4). Тогда отношение (или ) является порядком на , а возникающее упорядоченное множество оказывается решёткой, причём: