Дипломная работа: Целочисленные функции

Задача 3.

Вычислите , если m и n — натуральные числа, а — иррациональное число, большее n .

Решение:

= = = = = (так как и ).

Ответ: .

Задача 4.

Докажите, что .

Доказательство:

.

Отсюда , так как n — натуральное число.

Итак, . Что и требовалось доказать.

Задача 5.

Доказать, что если f (x ) — непрерывная, монотонно убывающая функция и f (x ) — целое Þx — целое, тогда .

Доказательство:

1 случай: если , то .

2 случай: если , то , так как f – убывающая функция; (в силу того, что функция «пол» — неубывающая).

Если , то существует такое число , что и (так как f непрерывна). Поскольку f (y ) целое, то по условию целое. А это противоречит тому, что между x и éx ù не может быть никакого целого числа. Следовательно, .

Что и требовалось доказать.

Задача 6.

Решите рекуррентность при целом

при ,

при .

Решение:

Покажем, что методом математической индукции по .

База: : из того, что , следует, что , тогда и , поэтому для выполняется .

Переход: пусть для некоторого номера и для меньших номеров утверждение верно: .

Докажем, что .

=.

Что и требовалось доказать.

Задача 7.

Докажите принцип ящиков Дирихле: если n предметов размещены по m ящикам, то некоторый ящик должен содержать не меньше чем én / m ù предметов, а некоторый ящик должен содержать не более чем ën / m û.

К-во Просмотров: 383
Бесплатно скачать Дипломная работа: Целочисленные функции