Дипломная работа: Упругопластическая деформация трубы
.
С учетом введенных условных констант упругости физические соотношения для плоской деформации примут тот же вид, что и для случая плоского напряженного состояния, но в них надо заменить на , на .
Таким образом, любое решение приведенных выше уравнений для плоского напряженного состояния может быть применено и для соответствующего случая плоской деформации после замены действительных констант упругости данного материала на условные. Учитывая сказанное, в дальнейшем будем подразумевать под плоской задачей случай плоского напряженного состояния.
В полярной системе координат уравнения закона Гука остаются без изменения, меняются лишь индексы у напряжений и деформаций:
.
Полученные уравнения дают возможность вычислить деформации, если известны напряжения. Назовем их законом Гука в прямой форме.
Преобразуем
.
В обратной форме
или, так как , то
.
1.5 Условия пластичности
При решении задач теории пластичности во многих случаях необходимо знать, при каких условиях материал в рассматриваемой точке переходит из упругого состояния в пластическое. Такие условия называются условиями пластичности. При линейном напряженном состоянии условие пластичности устанавливается опытным путем. В этом случае отлично от нуля только главное напряжение и пластические деформации возникают, когда
; , (1.5.1)
где - предел текучести при растяжении (постоянная величина для каждого материала). При чистом сдвиге условие пластичности, получаемое экспериментальным путем, имеет вид
,
где - предел текучести при чистом сдвиге (также постоянная величина для каждого материала).
В общем случае плоского или объемного напряженных состояний экспериментально невозможно установить условия пластичности для бесконечного множества соотношений между составляющими напряжений. Поэтому условие пластичности для сложного напряженного состояния устанавливается гипотетическим путем с последующей экспериментальной проверкой.
Рассмотрим два условия пластичности, наиболее часто используемые в теории пластичности и достаточно правильно определяющие переход материала из упругого состояния в пластическое.
Первое условие – условие пластичности Треска - Сен-Венана – гласит, что пластические деформации в материале возникают, когда максимальные касательные напряжения достигают значения, равного пределу текучести при чистом сдвиге:
. (1.5.2)
Максимальные касательные напряжения определяются формулой
: . (1.5.3)
Подставляя сюда главные напряжения при линейном напряженном состоянии (1.5.1), в момент появления пластических деформаций получаем
. (1.5.4)
Сравнивая формулы (1.5.2) и (1.5.4) заключаем, что
. (1.5.5)
После подстановки выражений ( 1.5.3 ) и ( 1.5.5 ) в формулу ( 1.5.1 ) приходим к условию пластичности Треска-Сен-Венана в таком виде: