Дипломная работа: Упругопластическая деформация трубы

.

С учетом введенных условных констант упругости физические соотношения для плоской деформации примут тот же вид, что и для случая плоского напряженного состояния, но в них надо заменить на , на .

Таким образом, любое решение приведенных выше уравнений для плоского напряженного состояния может быть применено и для соответствующего случая плоской деформации после замены действительных констант упругости данного материала на условные. Учитывая сказанное, в дальнейшем будем подразумевать под плоской задачей случай плоского напряженного состояния.

В полярной системе координат уравнения закона Гука остаются без изменения, меняются лишь индексы у напряжений и деформаций:

.

Полученные уравнения дают возможность вычислить деформации, если известны напряжения. Назовем их законом Гука в прямой форме.

Преобразуем


.

В обратной форме

или, так как , то

.

1.5 Условия пластичности

При решении задач теории пластичности во многих случаях необходимо знать, при каких условиях материал в рассматриваемой точке переходит из упругого состояния в пластическое. Такие условия называются условиями пластичности. При линейном напряженном состоянии условие пластичности устанавливается опытным путем. В этом случае отлично от нуля только главное напряжение и пластические деформации возникают, когда


; , (1.5.1)

где - предел текучести при растяжении (постоянная величина для каждого материала). При чистом сдвиге условие пластичности, получаемое экспериментальным путем, имеет вид

,

где - предел текучести при чистом сдвиге (также постоянная величина для каждого материала).

В общем случае плоского или объемного напряженных состояний экспериментально невозможно установить условия пластичности для бесконечного множества соотношений между составляющими напряжений. Поэтому условие пластичности для сложного напряженного состояния устанавливается гипотетическим путем с последующей экспериментальной проверкой.

Рассмотрим два условия пластичности, наиболее часто используемые в теории пластичности и достаточно правильно определяющие переход материала из упругого состояния в пластическое.

Первое условие – условие пластичности Треска - Сен-Венана – гласит, что пластические деформации в материале возникают, когда максимальные касательные напряжения достигают значения, равного пределу текучести при чистом сдвиге:

. (1.5.2)

Максимальные касательные напряжения определяются формулой


: . (1.5.3)

Подставляя сюда главные напряжения при линейном напряженном состоянии (1.5.1), в момент появления пластических деформаций получаем

. (1.5.4)

Сравнивая формулы (1.5.2) и (1.5.4) заключаем, что

. (1.5.5)

После подстановки выражений ( 1.5.3 ) и ( 1.5.5 ) в формулу ( 1.5.1 ) приходим к условию пластичности Треска-Сен-Венана в таком виде:

К-во Просмотров: 470
Бесплатно скачать Дипломная работа: Упругопластическая деформация трубы