Книга: Ряды Фурье Интеграл Фурье Операционное исчисление

(4.6)

где, как и ранее,

Соотношение (4.6) называется обобщенным равенством Парсеваля. Это аналог формулы (1.3) для скалярного произведения векторов.

Так как для функций коэффициенты Фурье, очевидно, равны , в силу замкнутости системы из (4.5) следует


Вычитая почленно эти равенства и используя тождества

получим равенство (4.6).

3. Если – замкнутая ортогональная система функций, то

, (4.7)

т.е. интеграл от функции можно получить почленным интегрированием ее ряда Фурье. Для доказательства достаточно применить формулу (4.6) к функциям и

и учесть, что в этом случае . Тогда

Отметим, что справедливость формулы (4.7) установлена даже без предположения о сходимости ряда Фурье.

Упражнение. Доказать, что если ряд Фурье сходится равномерно на промежутке [а , b ] к функции , то он сходится в среднем к этой функции.

§ 5. Тригонометрический ряд Фурье на промежутке [–L , L ]

Система функций

(5.1)

ортогональна на промежутке [–L , L ] (см. упражнение в § 3).

Показать, что следует самостоятельно.

Каждой функции , кусочно-непрерывной на промежутке [–L , L ], сопоставим ее ряд Фурье:

. (5.2)

Коэффициенты Фурье , в соответствии с (3.1), определятся формулами

(5.3)

Ряд (5.2) называется тригонометрическим рядом Фурье.

Как отмечалось в § 4, система функций (5.1) является замкнутой. Поэтому для любой кусочно-непрерывной функции ее ряд Фурье (5.2) сходится в среднем к этой функции. Равенство Парсеваля (4.5) в принятых теперь обозначениях примет вид

К-во Просмотров: 399
Бесплатно скачать Книга: Ряды Фурье Интеграл Фурье Операционное исчисление