Книга: Ряды Фурье Интеграл Фурье Операционное исчисление

. (8.2)

Аналогично, если функцию продолжить на промежуток [–L , 0] нечетным образом, полагая для , и разложить полученную функцию в ряд Фурье на промежутке [–L , L ], то в этом разложении будут содержаться только синусы:

(8.3)

где

. (8.4)

На промежутке [0, L ] ряды (8.1) и (8.3) представляют одну и ту же функцию , но вне этого промежутка эти ряды ведут себя по-разному. Так на промежутке [–L , 0] ряд (8.1) сходится к четному, а ряд (8.3) к нечетному продолжению функции .

Функции

; (8.5)

, (8.6)

участвующие в разложениях (8.1) и (8.3), образуют ортогональные системы на промежутке [0, L ]. Кроме того, как нетрудно проверить, . Поэтому величины и , определяемые формулами (8.2) и (8.4), представляют собой коэффициенты Фурье функции относительно ортогональных систем (8.5) и (8.6) соответственно, и, следовательно, ряды (8.1) и (8.3) являются рядами Фурье на промежутке [0, L ] для этой функции.

Замечание . Если функцию , заданную на [0, L ], продолжить произвольным образом на промежуток [0, L ], например, просто положив для , то ее разложение в тригонометрический ряд будет содержать и синусы, и косинусы:

. (8.7)

На промежутке [0, L ] этот ряд будет представлять заданную функцию, но, в отличие от рядов (8.1) и (8.3), ряд (8.7), вообще говоря, не является рядом Фурье для функции на указанном промежутке, так как система функций

,

участвующая в разложении (8.7), не ортогональна на [0, L ] (см § 2, упражнение 2, д).

§ 9. Ряды Фурье для комплексных функций

Рассмотрим элементы теории рядов Фурье для комплексных функций, т.е. функций вида , где i – мнимая единица, – вещественные функции вещественного аргумента. Обозначим символом множество комплексных кусочно-непрерывных функций, определенных на промежутке .

Скалярным произведением функций назовем комплексное число

,

где – функция, комплексно сопряженная с функцией .свойства скалярного произведения комплексных функций следующие:

1.

2. билинейность

, .

Доказать свойства 1 и 2 предлагаем самостоятельно.

Как и ранее, функции f и g будем называть ортогональными, если их скалярное произведение равно нулю.

Определение нормы функции оставим прежним, так что

.

Свойства нормы, претерпевшие изменения при переходе от вещественных функций к комплексным, следующие:

1. теорема косинусов.

К-во Просмотров: 401
Бесплатно скачать Книга: Ряды Фурье Интеграл Фурье Операционное исчисление