Книга: Введение в математический анализ

Одним из основных понятий математики является число. Числа целые и дробные, как положительные, так и отрицательные, вместе с числом ноль называются рациональными числами. Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей. Числа, которые представляются в виде бесконечных, но непериодических дробей, называются иррациональными .

Совокупность всех рациональных и иррациональных чисел называется множеством действительных , или вещественных чисел. Действительные числа можно изображать точками числовой оси. Числовой осью называется бесконечная прямая, на которой выбраны:

1) некоторая точка О, называемая началом отсчёта;

2) положительное направление, указываемое стрелкой;

3) масштаб для измерения длин.

Между всеми действительными числами и всеми точками числовой оси существует взаимно–однозначное соответствие , т.е. каждому действительному числу соответствует точка числовой оси и наоборот.

Абсолютной величиной (или модулем ) действительного числа x называется неотрицательное действительное число ׀x ׀, определяемое следующим образом: ׀x ׀ = x , если x ≥ 0, и ׀x ׀ = –x , если x < 0.

Переменной величиной называется величина, которая принимает различные численные значения. Величина, численные значения которой не меняются, называется постоянной величиной.

Переменная величина называется упорядоченной , если известна область её изменения и про каждое из двух любых её значений можно сказать, какое из них предыдущее и какое последующее. Частным случаем такой величины является числовая последовательность

Переменная величина называется возрастающей (убывающей ), если каждое её последующее значение больше (меньше) предыдущего. Возрастающие и убывающие переменные величины называются монотонными . Переменная величина называется ограниченной , если существует такое постоянное число M > 0, что все последующие значения переменной, начиная с некоторого, удовлетворяют условию:

– M ≤ x ≤ M, т.е. ׀x ׀ ≤ M.

Переменная величина y называется (однозначной) функцией переменной величины x, если каждому значению переменной величины x, принадлежащему множеству действительных чисел X, соответствует одно определённое действительное значение переменной величины y .

Переменная x называется в этом случае аргументом , или независимой переменной , а множество X – областью определения функции.

Запись y = f ( x ) означает, что y является функцией x . Значение функции f ( x ) при x = a обозначают через f ( a ).

Область определения функции в простейших случаях представляет собой: интервал (открытый промежуток ) (a , b ), т.е. совокупность значений x , удовлетворяющих условию a < x < b ; сегмент (отрезок или замкнутый промежуток ) , т.е. совокупность значений x , удовлетворяющих условию a x b ; полуинтервал (т.е. a < x b ) или (т.е. a x < b ); бесконечный интервал (a , + ∞) (т.е. a < x < + ∞) или (– ∞, b ) (т.е. – ∞ < x < b ) или (– ∞, + ∞) (т.е. – ∞ < x < + ∞); совокупность нескольких интервалов или сегментов и т. п.

Графиком функции y = f ( x ) называется геометрическое место точек плоскости xOy, координаты которых удовлетворяют уравнению y = f ( x ).

Функция f ( x ) называется чётной, если для любого значения x . График чётной функции расположен симметрично относительно оси ординат. Функция f(x) называется нечётной , если для любого значения x . График нечётной функции расположен симметрично относительно начала координат.

Функция f ( x ) называется периодической , если существует такое положительное число T, называемое периодом функции, что для любого значения x выполняется равенство .

Наименьшим же периодом функции называется наименьшее положительное число τ, для которого f ( x + τ) = f ( x ) при любом x . Следует иметь в виду, что f ( x + k τ) = f ( x ) , где k – любое целое число.

Функции задаются:

1) аналитически (в виде формулы), например, ;

2) графически (в виде графика);

3) таблично (в виде таблицы), например таблица логарифмов.

Основными элементарными функциями являются следующие, аналитически заданные функции:

1. Степенная функция : , где α – действительное число.

2. Показательная функция : , где a > 0, a ≠ 1.

3. Логарифмическая функция : , где a > 0, a ≠ 1.

4. Тригонометрические функции : y = sinx , y = cosx , y = tgx , y = ctgx ,

y = sec x, y = cosec x.

5. Обратные тригонометрические функции :

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 440
Бесплатно скачать Книга: Введение в математический анализ