Контрольная работа: Численные методы расчетов в Exel
4,5x1 + 5,7x2 + 1,2x3 = 5,8
a) Достаточно хорошо видно, что для преобразования нам достаточно только поменять местами первое и третье уравнения . Получится система вида:
4,5x1 + 5,7x2 + 1,2x3 = 5,8
2,8x1 + 6,1x2 + 2,8x3 = 6,7
0,1x1 + 4,6x2 + 7,8x3 = 9,8
б) Для решения системы уравнений методом простых итераций необходимо представить полученную систему уравнений в итерационной форме , записав каждое из трех уравнений в виде решения относительно той неизвестной переменной, которая имеет наибольший по модулю коэффициент.
4,5x1 + 5,7x2 + 1,2x3 = 5,8
x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5
2,8x1 + 6,1x2 + 2,8x3 = 6,7
x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1
0,1x1 + 4,6x2 + 7,8x3 = 9,8
x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 9,7
В итерационной форме получили систему:
x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5
x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1
x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 9,7
в) Проверка выполнения первого условия сходимости метода для данной системы.
При использовании итерационного метода решения необходимо обязательно проверить два условия сходимости метода для данной системы. Первое условие у нас выполнено (диагональные коэффициенты матрицы x1 , x2 , x3 в полученной системе являются максимальными по модулю).
г) Проверка выполнения второго условия сходимости метода для данной системы (условие “НОРМА”).
Теперь необходимо проверить условие “НОРМА” (обозначается ║C ║), т.е. необходимо оценить сходимость метода для данной системы , которая зависит только от матрицы коэффициентов [ C ]. Процесс сходится только в том случае,если норма матрицы [ С ] меньше единицы , т.е.
║C║=√Σaaj 2 <1
В итерационной форме имеем систему:
x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5
x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1
x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 7,8
или
x1 = 0 - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 1,288889
x2 = 2,8x1 / 7,8 - 0 - 2,8x3 / 6,1 + 1,0983607
x3 = 0,1x1 / 7,8 - 4,6x2 / 7,8 - 0 + 1,2564103