Контрольная работа: Доказательство сильной гипотезы Гольдбаха-Эйлера
Слабая гипотеза Гольдбаха формулируется следующим образом: любое нечетное число М , большее семи, представимо в виде суммы трех нечетных простых чисел:
М = A + B + C ,
где: A, Bи C – простые числа.
При этом:
A ≠ B ≠ С
ДОКАЗАТЕЛЬСТВО
Обозначим:
A + B =N.
Очевидно, что N – четное число.
Тогда:
M = N + C.
Отсюда:
N = M – C.
Вычтя из любого нечетного числа простое число, получим четное число. Выше при доказательстве сильной гипотезы Гольдбаха-Эйлера доказано, что любое четное число, большее двух, равно сумме одной пары или нескольких пар простых чисел. Следовательно, любое нечетное число М, большее семи, равно:
M = N + C = A + B + С,
где: A , B и C – простые числа.
При этом:
A ≠ B ≠ С
Автор: Козий Николай Михайлович, инженер-механик
E-mail: [email protected]