Контрольная работа: Корреляционный анализ
и .
Доверительные интервалы для коэффициентов регрессии
Их построение осуществляется в соответствии с общей схемой. При этом используются статистики:
; ,
имеющие распределение Стьюдента с числом степеней свободы, равном .
;
,
где - корень уравнения .
Многомерная корреляционная модель
Предполагается, что совместное распределение анализируемых случайных переменных (признаков) подчинено h -мерному нормальному закону.
Типовые задачи
¨ определение тесноты связи между некоторыми переменными при фиксировании или исключении влияния остальных переменных;
¨ определение тесноты связи одной из рассматриваемых переменных с совокупностью всех остальных переменных, включенных в анализ.
Корреляционная матрица
Начальный этап многомерного корреляционного анализа количественных признаков состоит в оценке (приближении) на основе выборочных данных матрицы
,
элементы которой - парные коэффициенты корреляции переменных .
Выборочная корреляционная матрица
В качестве статистического аналога корреляционной матрицы принимается матрица
,
здесь - выборочные парные коэффициенты корреляции переменных .
Свойство корреляционных матриц
Матрицы , qh симметричны относительно главной диагонали.
Вся имеющаяся для анализа статистическая информация о зависимостях между случайными величинами содержится в выборочной корреляционной матрице .
Однако раскрытие многообразия взаимосвязей данных переменных непосредственно по их парным коэффициентам корреляции невозможно. Для проведения исследования при решении указанных типовых задач необходимо вычислять также частные и множественные коэффициенты корреляции, представляющие собой определенные действительные функции матрицы .
Частный коэффициент корреляции
,
где - минор элемента матрицы , т.е. определитель матрицы, получающейся из корреляционной матрицы удалением -ой строки и -го столбца.
Свойства частного коэффициента корреляции
обладает всеми свойствами парного коэффициента корреляции , т.к. является коэффициентом корреляции для их условного двумерного распределения. В отличие от парного коэффициента корреляции , на величине которого сказывается не только влияние переменных друг на друга, но и воздействие остальных переменных, частный коэффициент корреляции позволяет характеризовать тесноту связи между признаками в «чистом» виде, исключая при анализе зависимости влияние других переменных. Если парный коэффициент корреляции больше соответствующего частного коэффициента , то можно заключить, что остальные рассматриваемые переменные усиливают взаимосвязь между изучаемыми величинами . Уменьшение значения парного коэффициента корреляции, в сравнении с отвечающим ему частным коэффициентом корреляции, свидетельствует об ослаблении связи между исследуемыми величинами в результате воздействия других переменных.
Выборочный частный коэффициент корреляции
Точечная оценка определяется по формуле:
,