Контрольная работа: Метод потенциалов для решения транспортной задачи в матричной форме. Задача оптимального распределения ресурсов
х1 = 1 + 2х2
Если х1 = 0, то х2 = –1/2;
если х2 = 0, то х1 = 1.
Строим прямые уравнений ограничений и находим область допустимых решений (рис. 1).
х2 ≤ – х1 +1 – нижняя полуплоскость;
2х2 ≥ х1 –1 – верхняя полуплоскость.
Рис. 1 - Решением системы неравенств является т. С (0;1)
Ответ: х1 = 0
х2 = 1
Задача №3
Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством.
Исходные данные (вариант 7 ):
Целевая функция: f(x) = x1 + 2x2 –3х3 → max.
Ограничения: x1 + x2 + х3 = 25,
2x1 – 3x2 + 3х3 ≥ 10;
x1 – 3x2 + 4х3 ≤ 30.
Решение:
Т.к. дана задача на максимизацию целевой функции f, то она сводится к задаче на минимизацию функции –f.
Введем функцию q = –f = –x1 – 2x2 +3х3
От ограничений неравенств переходим к ограничениям-равенствам, введя новые переменные х4 и х5 :
х4 = 2x1 – 3x2 + 3х3 – 10; х5 = –x1 + 3x2 – 4х3 + 30.
Получим следующую основную задачу линейного программирования:
x1 + x2 + х3 = 25
х4 = 2x1 – 3x2 + 3х3 – 10
х5 = –x1 + 3x2 – 4х3 + 30
q = –x1 – 2x2 +3х3 → min
Выразим из 1-го уравнения х1 через другие неизвестные и подставим это его выражение в другие уравнения, а также в уравнение для функции q. Получим:
x1 = –x2 – х3 + 25