Контрольная работа: Метод потенциалов для решения транспортной задачи в матричной форме. Задача оптимального распределения ресурсов
х1 + 9х2 = 13 (2)
Из 2 – го ур – ия: х1 = 13 – 9х2
5 (13 – 9х2 ) – 4х2 = 1
65 – 45х2 – 4х2 = 1
49х2 = 64
х2 = 1,306
х1 = 13 – 9 1,306 = 1,246
х3 = 2 1,306 – 0,5 = 2,112
х4 = 2,112 – 0,5 = 1,612
х5 = 2 · 1,612 – 1 = 2,224
П5 = 0,18 1,246 – 0,05 1,2462 + 0,16 1,306 – 0,04 1,3062 + 0,14 2,112 – 0,02 2,1122 + 0,12 1,612 – 0,02 1,6122 + 0,1 2,224 – 0,01 2,2242 = 0,224 – 0,078 + 0,209 – 0,068 + 0,296 – 0,089 + 0,193 – 0,052 + 0,222 – 0,049 = 0,808 млрд.руб.
Ответ: Максимальное значение прибыли П5 = 0,808 млрд. руб.
Распределение инвестиций: х1 = 1,246 млрд. руб.
х2 = 1,306 млрд. руб.
х3 = 2,112 млрд. руб.
х4 = 1,612 млрд. руб.
х5 = 2,224 млрд. руб.
Задача №6
Метод экспертных оценок для отбора кандидата из кадрового резерва на должность руководителя.
Задание:
Требуется методом экспертного ранжирования из группы кадрового, включающего в себя семь кандидатов, отобрать наиболее достойного, по мнению коллектива, из 10 экспертов.
После коллективного ранжирования экспертами степени подготовленности и личностных свойств всех представителей группы кадрового резерва и выбора лучшего из них определить степень согласованности мнений группы экспертов.
Исходные данные (вариант 67 ):
Каждый Э j эксперт оценивает степень подготовленности каждого члена группы кадрового резерва, сопоставив ему целое число – его ранг kij , т.е. номер члена группы в порядке убывания оценки степени подготовленности. Первый ранг имеет тот, кто, по мнению эксперта, подготовлен лучше других, второй – менее подготовлен, но лучший из оставшихся.
Принято, что эксперты отличаются уровнем компетентности, которую можно оценить вероятностью получения экспертом достоверной оценки. Тогда каждый эксперт получает весовой коэффициент, значение которого лежит в пределах 0 < а j ≤ 1 для Э – го эксперта.
Решение:
Для решения задачи составим матрицу мнений экспертов в виде таблицы 1.
В таблице 1 по каждому Э j столбцу х i числу из группы резерва присваивается kij ранг – целое число от 1 до n .
Получаем матрицу мнений экспертов размерностью N · n , в которой сумма элементов любого столбца равна