Контрольная работа: Методы оптимизации при решении уравнений

(2)

Составим функцию Лагранжа и гамильтониан:

и соответственно уравнения Эйлера-Лагранжа (здесь для Н):

(3)

(4)

Используя замену (3), подставим выражения (4) во второе уравнение динамики в (1):

и находим общее решение

(5)

Подставим его в первое уравнение (1):


и находим общее решение:

(6)

Для из (6) и из (5) используем начальные и конечные условия и получаем систему уравнений для констант С1 , С2 , С3 , С4 ,:

Таким образом, решение имеет вид:

которое удовлетворяет начальным и конечным условиям.

Задание №3

Для системы, описываемой уравнениями

с заданными условиями на начальное и конечное значение координат, найти оптимальное управление , минимизирующее функционал

A B t0 tf x0 xf g0 a b

0 1

0 0

0

1

0 t

К-во Просмотров: 402
Бесплатно скачать Контрольная работа: Методы оптимизации при решении уравнений