Контрольная работа: Методы оптимизации при решении уравнений

0

1

0 1

0

0

0

x1 ®max

0

0

£1

Решение:

Формируем задачу по исходным данным:

(4)

Составим функцию Гамильтона

Уравнения Эйлера-Лагранжа имеет вид:

(5)

(6)

(7)


Поскольку – подвижна, то используем условие трансверсальности:

Но из (5) видно, что y1 = С1 Þ С1 = 1. Тогда из (7) видно, что y3 = t2 /2-C2 t+C3 , - то есть это квадратичная парабола ветвями вверх, которая может дважды пересечь уровень y3 = 0 и возможных порядок следования интервалов знакопостоянства следующий: +, -, +.

Из принципа максимума следует:

,

а следовательно:

Тогда, поскольку y3 меняет знак дважды, (пусть в моменты t1 и t2 ) можем записать

(8)

Подставим в (3) и получим, проинтегрировав уравнение (3)


К-во Просмотров: 400
Бесплатно скачать Контрольная работа: Методы оптимизации при решении уравнений