Контрольная работа: Процесс обработки статистикой информации
Рисунок 1 - Эмпирический график зависимости результативного признака Yот факторного X.
Из графика видно, что зависимость между признаками носит линейный характер. На данном интервале функция возрастает, т.е. чем больше факторный признак, тем соответственно больше результативный. Считаю, что график построен верно, т.к. логично предположить, что чем больше выработка продукции на одного работающего, тем выше его средняя заработная плата.
Определение межгрупповой дисперсии
(2)
Определение коэффициента вариации
, (3)
Определение среднеквадратического отклонения
(4)
Используя значения таблицы 7, получим
Задача № 5
Используя данные комбинационной таблицы и опираясь на выводы, полученные на основе графического анализа характера связи между двумя показателями, следует выделить определенные особенности и свойства изучаемой совокупности. Для этого необходимо провести ряд статистических расчетов.
1. Определить корреляционную зависимость между факторным и результативным признаками. При этом выбор уравнения связи должен производиться на основе выявления экономической сущности зависимости показателей между собой с использованием графического способа.
2. Определить показатели тесноты связи (коэффициент корреляции - r или корреляционное отношение - η ).
3. Нанести уравнение регрессии на график, полученный в задаче № 4. Проследить, как выявленная методом корреляционного анализа теоретическая линия регрессии (прямая или кривая) расположена относительно эмпирической.
Определение коэффициента корреляции.
Коэффициент корреляции (между двумя признаками) характеризует интенсивность связи между ними; он может изменяться в пределах от - 1,0 до +1,0. Знак коэффициента характеризует направление изменения результативного признака при увеличении факторного.
(5)
Таблица 8 - Расчет коэффициента корреляции
Хi | Уi | ХiУi | Хi2 | Уi2 | |
1 | 1635,72 | 209,14 | 342090,70 | 2675590,62 | 43738,40 |
2 | 1439,29 | 196,06 | 282182,54 | 2071543,37 | 38438,48 |
3 | 1408,65 | 193,67 | 272817,55 | 1984286,37 | 37509,41 |
4 | 1253,17 | 191,45 | 239915,48 | 1570440,58 | 36651,78 |
5 | 1203,06 | 183,16 | 220353,98 | 1447356,31 | 33547,98 |
6 | 1163, 19 | 182,67 | 212481,80 | 1353005,99 | 33369,04 |
7 | 1080,65 | 180,78 | 195359,88 | 1167793,96 | 32681,69 |
8 | 1039,45 | 179,71 | 186800,36 | 1080453,71 | 32296,04 |
9 | 970,11 | 179,64 | 174270, 20 | 941111,81 | 32270,45 |
10 | 958,67 | 178,18 | 170814,71 | 919053,09 | 31747,53 |
11 | 944,78 | 178,09 | 168252,47 | 892616,08 | 31714,52 |
12 | 883, 19 | 176,95 | 156278,99 | 780017,23 | 31311,00 |
13 | 869,62 | 175,98 | 153036,70 | 756232,49 | 30969,62 |
14 | 866,90 | 175,73 | 152340,80 | 751520,81 | 30881,01 |
15 | 828,83 | 175,10 | 145127,82 | 686957,23 | 30659,96 |
16 | 819,40 | 175,04 | 143424,73 | 671411,74 | 30637,91 |
17 | 811,53 | 174,85 | 141891,52 | 658573,51 | 30570,93 |
18 | 792,50 | 174,47 | 138263,79 | 628052,18 | 30438,36 |
19 | 785,89 | 173,76 | 136556, 20 | 617616,00 | 30192,86 |
20 | 766,24 | 173,69 | 133088,42 | 587127,99 | 30168,08 |
21 | 766,24 | 173,26 | 132758,92 | 587123,74 | 30019,11 |
22 | 763,77 | 165,94 | 126742,12 | 583345,47 | 27536,97 |
23 | 762,01 | 160,80 | 122527,86 | 580653,07 | 25855,50 |
24 | 744,16 | 160,53 | 119460,11 | 553768,36 | 25770, 19 |
25 | 741,97 | 150,48 | 111651,77 | 550520,67 | 22644,23 |
26 | 705,47 | 145,48 | 102635,02 | 497692,86 | 21165,56 |
27 | 694,35 | 136,14 | 94532,44 | 482124,44 | 18535,43 |
28 | 549,94 | 134,75 | 74102,64 | 302429,04 | 18156,99 |
29 | 527,98 | 127,96 | 67558,48 | 278766,08 | 16372,68 |
30 | 514, 19 | 121,97 | 62714,28 | 264389,85 | 14876,07 |
∑ | 27290,89 | 5105,41 | 4780032,26 | 26921574,62 | 880727,78 |
Проверим значимость коэффициента корреляции, т.е. возможность отвергнуть теорию о некоррелированности рассматриваемых величин.
Для этого определим коэффициент (6)
Для нашего примера
В справочнике найдем табличное значение критерия значимости. При заданной вероятности Р=0,95 и N=30 . Условие, при котором отвергают гипотезу о некоррелированности исследуемых величин . Условие выполняется, следовательно гипотезу некоррелированности признаков можно отвергнуть с заданным уровнем надежности.
Построение линейной регрессионной модели.
Наибольшее распространение получил метод наименьших квадратов МНК, при использовании которого ставится требование, чтобы сумма квадратов разностей между эмпирическими и теоретическими значениями была минимальной.