Контрольная работа: Процесс обработки статистикой информации
Для решения поставленной задачи используем дисперсионный анализ. Если теоретическая линейная регрессия действительно выражает форму эмпирической связи, то отклонения эмпирической линии регрессии от теоретической будут случайными.
В случае если в действительности связь не прямолинейна, отклонения не будут случайными, а будут отражать кривизну эмпирической регрессии. Поэтому вопрос о линейной регрессии может быть решен путем сравнения неслучайных и случайных отклонений.
Неслучайные отклонения характеризуются дисперсией отклонения теоретической регрессии от среднего. Случайные отклонения характеризуются дисперсией остатка.
Определение общей дисперсии по результативному признаку
(7.1) (7.2) |
где К1 - число степеней свободы, приходящееся на регрессию; равно числу независимых переменных (для парной регрессии К1 =1)
К2 -число степеней свободы, приходящееся на остаток (К2 =N - К1 -1=28)
Y - теоретическое значение результативного признака, найденное по уравнению парной регрессии.
Таблица 9 - Расчет общей дисперсии
Х | Y | Х | Y | ||||
1635,72 | 222 | 2800,59 | 170,16 | 819,40 | 167 | 5,89 | 2222,63 |
1439,29 | 209 | 1568,33 | 682,48 | 811,53 | 166 | 8,76 | 2240,72 |
1408,65 | 207 | 1408,12 | 812,72 | 792,50 | 165 | 18,06 | 2276,79 |
1253,17 | 196 | 728,12 | 944,65 | 785,89 | 165 | 22,07 | 2344,56 |
1203,06 | 193 | 556,31 | 1522,60 | 766,24 | 163 | 36,36 | 2351,48 |
1163, 19 | 190 | 436,09 | 1561,01 | 766,24 | 163 | 36,36 | 2393,30 |
1080,65 | 185 | 233,67 | 1714,03 | 763,77 | 163 | 38,41 | 3162,82 |
1039,45 | 182 | 156,08 | 1803,76 | 762,01 | 163 | 39,91 | 3768,14 |
970,11 | 177 | 60,72 | 1809,81 | 744,16 | 162 | 56,66 | 3800,80 |
958,67 | 176 | 49,23 | 1936,29 | 741,97 | 162 | 58,92 | 5141,12 |
944,78 | 175 | 36,90 | 1944,45 | 705,47 | 159 | 103,03 | 5882,55 |
883, 19 | 171 | 3,60 | 2045,98 | 694,35 | 158 | 118,90 | 7402,33 |
869,62 | 170 | 0,96 | 2134,42 | 549,94 | 149 | 428,32 | 7644,66 |
866,90 | 170 | 0,63 | 2157,76 | 527,98 | 147 | 492,14 | 8878,51 |
828,83 | 167 | 3, 19 | 2216,69 | 514, 19 | 146 | 534,51 | 10042,88 |
10040,86 | 93010,09 |
Таким образом:
S1 =10040,86/1=10040,86
S2 =93010,09/28=3321,79
Для установления соответствия эмпирической регрессии линейной форме связи определяют дисперсионное отношение F=S1 /S2 и сравнивают со значением из справочника при заданной надежности.
F=10040,86/3321,79=3,03, табличное значение F=4,2.
Фактическое значение меньше табличного, значит прямолинейная форма связи не соответствует эмпирическим данным.
Рисунок 2 - Графическая интерпретация теоретической и эмпирической регрессии
Корреляционный анализ статистических данных показал относительно высокую степень связи между факторным и результативным признаками.
Регрессионный анализ позволилподобрать регрессионную линейную модель методом наименьших квадратов. Насколько эта модель адекватна экспериментальным данным доказала проверка с помощью дисперсионного анализа. В частности, была проверена гипотеза о том, что регрессионная модель точнее описывает результаты эксперимента, чем среднее по всем опытам. С достоверностью 95 % эта гипотеза подтвердилась.
Задача № 6
Для изучения показателей производительности труда на предприятии, число рабочих на котором составляет 5000 человек, было проведено методом случайного бесповторного отбора обследование квалификации рабочих в процентном отношении (таблица 10).
Таблица 10
Число рабочих | Квалификация рабочих (тарифные разряды) | Заданная вероятность Р | |||||
1 | 2 | 3 | 4 | 5 | 6 | ||
180 | 5 | 9 | 47 | 50 | 42 | 27 | 0,996 |
С заданной вероятностью следует определить:
а) процентное соотношение выборки для проведения обследования;
б) величину средней ошибки выборки;
в) предельную ошибку выборочной сpeднeй;
г) пределы, в которых находится средний тарифный разряд рабочих предприятия.
Средняя ошибка выборки для средней показывает расхождение выборочной и генеральной средней. При случайном бесповторном отборе она рассчитывается по следующей формуле
, (8)