Контрольная работа: Розв’язання системи лінійних алгебраїчних рівнянь
дорівнює нулеві (ця сума є сумою добутків елементів -го рядка визначника на алгебраїчні доповнення другого -го рядка визначника). Якщо сума
також дорівнює нулеві, так як вона дорівнює визначнику системи , який дорівнює нулеві.
Відмітимо, що при побудові розв’язку системи беруться алгебраїчні доповнення того рядка, де хоч би одне із не дорівнювало б нулю.
1. Розв’язання систем лінійних рівнянь методом Жордана-Гауса
1. Основні означення та результати
Розглянемо систему m лінійних рівнянь з n невідомими:
(1)
Означення . Розв’язком системи (1) називається сукупність значень невідомих
що задовольняють усі рівняння системи (1).
Означення . Система рівнянь (1) називається сумісною, якщо вона має принаймні один розв’язок, і несумісною, якщо вона не має розв’язків.
Система рівнянь називається визначеною, якщо вона має лише один розв’язок, і невизначеною, якщо вона має безліч розв’язків.
Дві системи рівнянь з однаковими невідомими називаються рівносильними, якщо кожний розв’язок однієї системи є розв’язком іншої системи або якщо ці системи рівнянь несумісні.
У результаті еквівалентних перетворень системи рівнянь завжди дістаємо рівносильну систему рівнянь. До еквівалентних перетворень системи належать:
1) переставлення місцями рівнянь;
2) множення або ділення рівнянь на число, що не дорівнює нулю;
3) додавання до деякого рівняння іншого рівняння, помноженого на довільне число.
Будь-який метод розв’язування системи рівнянь (1) передбачає виконання еквівалентних її перетворень, завдяки яким вона зводиться до такого вигляду, що розв’язок уже легко знайти.
Запишемо вектори-стовпці
. (2)
Для того щоб система рівнянь (1) була сумісною, тобто мала принаймні один розв’язок, необхідно і достатньо, щоб вектор був лінійною комбінацією векторів , тобто щоб ранг r системи векторів дорівнював рангу розширеної системи векторів .
Звідси дістаємо умову Кронекера-Капеллі сумісності системи рівнянь.
Для того щоб система (1) була сумісною, необхідно і достатньо, щоб ранг r матриці
(3)
дорівнював рангу розширеної матриці
.
Нехай система рівнянь (1) сумісна, тобто виконується рівність