Контрольная работа: Симплексный метод

y1 + y3 ³ 5

y1,2,3 ³ 0.

Оптимальное решение прямой задачи Х = (135; 100). Подставим его в ограничения этой задачи

3×135 + 1×100 = 505

135 < 150

100 = 100.

Условия дополняющей нежесткости (вторая теорема двойственности): для оптимальных планов двойственных задач имеют место соотношения:

Так как для оптимального решения прямой задачи второе ограничение выполняется как неравенство, то в оптимальном решении двойственной задачи y2 = 0.

Так как для оптимального решения прямой задачи х1 > 0и х2 > 0, то оба ограничения двойственной задачи выполняются как равенство. Для нахождения решения двойственной задачи получаем систему

y2 = 0

3y1 + y2 = 10

y1 + y3 = 5.

Получаем решение: y1 = 10/3, y2 = 0, y3 = 5/3.

Найдем значение целевой функции двойственной задачи:

g(Y) = 505×10/3 + 150×0 + 100×5/3 = 5550/3 = 1850.

Получили gmin = fmax = 1850 ден. единиц.

Так как значения прямой и двойственной функций равны, то Y = (10/3; 0; 5/3) является оптимальным решением двойственной задачи (по первой теореме двойственности).

Задача 3.

Задание 1. Записать исходные данные задачи в виде транспортной таблицы, определить, открытой или закрытой является транспортная задача.

Задание 2. Сформулировать экономико-математическую модель исходной транспортной задачи.

Задание 3. Найти оптимальный план перевозок, отметив при этом единственность или неединственность оптимального плана.

Вариант 3.

Картофель из четырех районов должен быть перевезен в три хранилища. Запасы картофеля в районах соответственно равны 400 т, 500 т, 800 т и 500 т. Возможности хранилищ соответственно равны 700 т, 800 т и 700 т. Затраты на перевозку одной тонны картофеля из первого района в каждое из хранилищ равны соответственно 1, 4 и 3 ден. единиц; аналогичные затраты на перевозку из второго района составляют 7, 1 и 5 ден. единиц, из третьего - 4, 8 и 3 ден. единиц, из четвертого - 6, 2 и 8 ден. единиц. Найти план перевозок картофеля из районов в хранилища, при котором транспортные расходы были бы минимальными.

Решение.

Задание 1.

Мощности

поставщиков

Мощности потребителей
700 800 700
400 1 4 3
500 7 1 5
800 4 8 3
500 6 2 8

Сумма мощностей поставщиков (запасы картофеля в всех районах) 400+500+800+500 = 2200, сумма мощностей потребителей (возможности всех хранилищ) 700+800+700 = 2200. Суммы равны, данная задача является транспортной задачей закрытого типа.

К-во Просмотров: 538
Бесплатно скачать Контрольная работа: Симплексный метод