Курсовая работа: Автоматическая система регулирования с П-регулятором
Автоматическим управление называется процесс, при котором операции выполняются посредством системы, функционирующей без вмешательства человека в соответствии с заданным алгоритмом. Автоматическая система с замкнутой цепью воздействия, в которой управляющее воздействие вырабатывается в результате сравнения истинного значения управляемой величины с заданным ее значением, называется АСР. Процесс, посредством которого одну или несколько регулируемых величин приводят в соответствие с их постоянными изменяющимися по определенному закону заданными значениями и при этом указанное соответствие достигается техническими средствами путем выработки воздействия на регулируемые величины. Процесс автоматического регулирования реализуется АСР. Автоматическая система структурно может быть представлена по–разному. В общем случае под структурой АСР понимается совокупность частей автоматической системы, на которые она может быть разделена по определенным признакам, и путей передачи взаимодействий между ними, образующих автоматическую систему. Простейшая составная часть структурной схемы АСР, отображающая путь и направление передачи воздействия между частями автоматической системы, на которые эта система разделена в соответствии со структурной схемой, называется связью структурной схемы. Связь структурной схемы АСР, образуемая основной цепью воздействия между участками этой цепи, называется основной связью. Связь структурной схемы АСР, образующая путь передачи воздействий в дополнение к основной цепи воздействий или какому – либо участку, называется дополнительной связью. Дополнительная связь структурной схемы АСР, направленная от выхода к входу рассматриваемого участка цепи воздействий, называется дополнительной обратной связью (или просто обратной связью). Обратная связь, замыкающая системы, передает результат измерения выходной величины на вход системы. Эта выходная величина представляет собой физическую величину, подлежащую регулированию (х - регулируемая величина или управляемаявеличина). Входная величина g (t) и f (t) являются соответственно задающим и возмущающим воздействием. Задача системы состоит в том, чтобы возможно точнее воспроизводить на выходе х задаваемый закон изменения g (t) и возможно полнее подавлять влияние возмущающего воздействия f (t), а также других внешних и внутренних помех, если они имеются. Для этой цели измеренная выходная величина х сравнивается через измеритель у = к . х с входной величиной g (t). Получается рассогласование (ошибка).
Рассогласование служит источником воздействия на систему, причем система работает на уничтожение или сведения к допустимо малому значению величины этого рассогласования, то есть величины ошибки системы. Случаю g (t) = const соответствует собственно автоматическое регулирование на поддержание постоянного значения регулируемой величины. Это типичная система регулирования по заданной настройке регулятора.
Важно отметить, что в замкнутых системах автоматического управления и регулирования, как правило, не бывает спокойного состояния равновесия. Все время имеются какие-то внешние возмущающие воздействия, порождающие рассогласование, которое заставляет систему работать. Поэтому важнейшим элементом проектирования таких систем является исследование динамических процессов, описываемых обычно системой дифференцируемых уравнений, отражающих поведение всех звеньев системы. Особенностью, усложняющей расчет динамики системы, является то, что в замкнутой системе все физические величины, представляющие воздействие одного звена на другое, связаны в единую замкнутую цепь.
Автоматические системы регулирования должны обеспечивать:
- устойчивость системы при любых режимных ситуациях объекта;
- минимальное время регулирования;
- минимальные динамические и статические отклонения регулируемой величины, не выходящие по уровню за допустимые эксплуатационные пределы.
Выполнение этих требований достигается в результате обоснованного использования одного из законов регулирования – математической зависимости между входной (отклонением регулируемой величины от предписанного значения) и выходной (регулирующим воздействием) величинами регулятора.
1. Построение статической характеристики объекта
1.1 Постановка задачи
Статические характеристики определяют зависимость между выходной и входной величинами звена или системы в установившемся состоянии.
Необходимо найти неизвестные параметры функции f(x) и некоторый минимизирующий критерий близости f(x) к экспериментальным данным y.
Таблица 1
Статическая характеристика объекта регулирования.
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 0 | 0,1 | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 | 3,2 | 3,5 |
Для построения статической характеристики необходимо табличные данные аппроксимировать полиномами первого и второго порядков.
Затем необходимо рассчитать сумму квадратов отклонений для каждой статистической характеристики объекта, и выбрать такую характеристику, у которой сумма квадратов отклонений будет наименьшей. Затем для этой модели рассчитаем коэффициент передачи объекта.
1.2 Аппроксимация полиномом первого порядка
Модель первого порядка описывается уравнением вида:
y=a∙x+b
Для нахождения коэффициентов а и b составим систему линейных алгебраических уравнений, причем число уравнений в системе равно числу состояний объекта в эксперименте.
Для решения данной системы алгебраических уравнений воспользуемся матричным методом наименьших квадратов. Составим матрицы входных и выходных сигналов:
Получим систему с двумя неизвестными: X. A = Y
Транспонируем матрицу Х:
Умножив слева обе части исходной системы на транспонированную матрицу коэффициентов, получим систему, число уравнений в которой равно числу неизвестных, а решение этой системе будет доставлять минимум критерий оптимизации.
XT . X . A = XT . Y