Курсовая работа: Автоматическая система регулирования с П-регулятором
2.3 Модель объекта первого порядка с запаздыванием
Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:
(2.4)
где T - постоянная времени объекта;
k - коэффициент передачи при 50% номинального режима;
- время запаздывания.
Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:
(2.5)
где y0 =0 - начальное состояние выхода объекта;
k. x=yуст. =10 - установившееся состояние выхода объекта.
Проведем преобразования, аналогичные модели без запаздывания
или запишем в виде системы :
(2.6)
где берется из табл. 7.
Так как , и , то все уравнения содержащие эти элементы в расчете участвовать не будут.
Решим систему (2.6) методом наименьших квадратов. Составим матрицы:
- искомых величин:
- правой части системы:
- левой части системы:
- произведение
- произведение
Таким образом получили матричное уравнение:
Находим главный определитель:
Подставляя матрицу поочередно в первый и второй столбец матрицы , находим вспомогательные определители: