Курсовая работа: Дифференциальное исчисление

3) вычислить предел разностного отношения при :

.

д) Непрерывность дифференцируемой функции.

Сформулируем и докажем необходимое условие существования производной.

Теорема: Если функция f(x) имеет производную в точке x0 , то она непрерывна в этой точке.

Согласно условию теоремы функция f(x) в точке x0 дифференцируема, т.е. существует предел:

Используя свойство предела, запишем это равенство в следующем виде:

,

где . Домножим равенство на (х – х0 ), находим, что дифференцируемая в точке x0 функция представима в окрестности этой точки в виде:

,

где . Переходя к пределу при в равенстве получаем:


.

Последнее означает непрерывность функции f(x) в точке x0 .

Замечание. Из доказанной теоремы легко усмотреть, что если функция не является непрерывной в некоторой точке, то она в этой точке не имеет производной.

Таким образом, непрерывность в точке – необходимое условие дифференцируемости в точке. Далее заметим, что непрерывность функции в точке не является достаточным условием существования производной этой функции в рассматриваемой точке, т.е. из непрерывности функции в точке не следует ее дифференцируемость в этой точке.

3. Ответы на вопросы учащихся время 10 мин.

4. Закрепление нового материала время 20 мин.

Самостоятельная работа по 4 вариантам

САМОСТОЯТЕЛЬНАЯ РАБОТА ПО 4 ВАРИАНТАМ

1. Найти мгновенную скорость в момент времени t0 свободного падения тела в поле тяжести Земли (I, II, III, IV).

2. Точка движется прямолинейно по закону x(t) = V0 t + . Найдите мгновенную скорость этой точки:

I в.: при t = 0

II в.: в момент t0

III в.: при t = 7

IVв.: в момент времени t = 7c

3. Найдите производную функции:

I в.: f(x) = x2

II в.: f(x) = 2x3 + 4x + 4

К-во Просмотров: 718
Бесплатно скачать Курсовая работа: Дифференциальное исчисление