Курсовая работа: Дифференциальное уравнение относительного движения механической системы
(1.1.2)
. Выберем φ0 =0 → φ=;
Рассмотрим проекцию на ось Ох. Разделим обе части уравнения на массу тела:
, где (1.1.3)
Общее решение полученного линейного неоднородного дифференциального уравнения с постоянными коэффициентами будем искать виде
x=X+,
где Х – общее решение соответствующего однородного уравнения,
-частное решение неоднородного уравнения.
Однородное уравнение имеет вид
=0, (1.1.4)
которому соответствует следующее характеристическое уравнение
i,
Т.к. величина под корнем отрицательна, то общим решением однородного дифференциального уравнения (1.1.3) будет являться функция:
Х=,
где С1 и С2 – постоянные интегрирования.
Частное решение уравнения (1.1.3) будем находить как результат суперпозиции двух решений: .
Для имеем:
(1.1.5)
, где k=0, значит
Подставим в (1.1.4):
При sin: