Курсовая работа: Дифференциальное уравнение относительного движения механической системы

Задание

Исходные данные

Форма тела 1 Однородная пластина
Масса тела 1 m1 кг 5
Масса материальной точки 2 m2 кг 0,1
Размеры a м 2
h м 3
Обобщенные координаты Обозначения Начальные значения для I этапа
q1 = j рад j0 = 0
q2 = x м x0 = 0,8
Жесткость пружины с Н/м 10
Длина свободной пружины l0 м 0,8
Угловая скорость тела 1 w1 рад/c 4
Конец I этапа движения t1 с 5
Конец II этапа движения t2 с 5

Содержание

Введение

1. Поведение системы в условиях стабильного закона движения

2. Поведение системы в конкретных условиях

3. Поведения системы в условиях малых колебаний

Список использованной литературы

Введение

Изучение теоретической механики как одной из фундаментальных физико-математических дисциплин играет важную роль в подготовке специалистов по механико-математическим и инженерным направлениям. Оно позволяет будущим специалистам не только получить глубокие знания о природе, но и вырабатывает у них необходимые навыки для решения сложных научных и технических задач, для которых требуется построение математических моделей разнообразных механических систем, развивает способности к научным обобщениям и выводам

Теоретическая механика, как часть естествознания, использующая математические методы, имеет дело не с самими материальными объектами, а их математическими моделями. Такими моделями являются материальные точки, системы материальных точек, твердые тела и деформируемая сплошная среда. В курсовой работе рассматриваются простейшие системы, которые состоят из твердых тел, совершающих простейшие движения, и перемещающейся по телу материальной точки.


1. Поведение с истем ы в условиях стабильного закона движения

1.1 Относительное движение материальной точки

Рис.1 Схема механической системы и действующие на шарик силы

Свяжем подвижную систему координат Оxy с вращающейся пластиной как показано на рисунке.

Вращение пластины вместе с системой координат Oxy вокруг оси является переносным движением для шарика. Относительным движением шарика является его движение вдоль трубки, расположенной вдоль пластины.

Дифференциальное уравнение относительного движения для рассматриваемого случая равномерного вращения пластины имеет вид

, (1.1.1)

где m – масса материальной точки;

- ускорение точки в подвижной системе отсчета;

- внешние силы: ,

- реакции связей: -нормальная реакция стенки трубки;

и - переносная и кориолисова силы инерции.

Вращение пластины происходит равномерно, следовательно =0, значит -.

Силы инерции и направлены противоположно переносному центростремительному и кориолисову ускорению , соответственно. Направление ускорения определим по правилу Жуковского: необходимо спроектировать относительную скорость шарика в плоскость вращения, а затем повернуть вектор этой скорости на 900 по направлению вращения, и получим направление ускорения Кориолиса.

Предположим, что относительная скорость шарика положительна. В этом случае кориолисова сила инерции направлена параллельно оси Оy подвижной системы координат.

Модули сил инерции определяются по формулам:

=

=.

Найдем зависимость he от х:

В итоге уравнение (1.1.1) примет вид:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 332
Бесплатно скачать Курсовая работа: Дифференциальное уравнение относительного движения механической системы