Курсовая работа: Дифференциальное уравнение относительного движения механической системы

Подставив производные левой части уравнений (2.1.1) и обобщенные силы и в уравнения (2.1.1), получим дифференциальные уравнения движения системы:

Для решения системы дифференциальных уравнений движения механической системы проведем численное интегрирование на ЭВМ. Результаты численного интегрирования приведены в приложении №2.

Для проверки численного интегрирования найдем, исходя из полученных данных, значения потенциальной и кинетической энергии механической системы. Суммируя значения потенциальной и кинетической энергии механической системы проверим, выполняется ли Закон сохранения энергии (см. приложение №2).

2.2 Определение реакций в опорах методом кинетостатики

Выберем для нашей системы неподвижную систему координат О1 X1 Y1 , (cм. рис.4).

Рис.4. Силы, действующие на систему

Уравнения кинетостатики в векторной форме имеют вид

(2.2.1)

где - главные векторы активных сил, реакций связей и сил инерции;

- главные моменты активных сил, реакций связей и сил инерции относительно точки О1 .

Сила инерции шарика как материальной точки, совершающей сложное движение, равна геометрической сумме относительной, переносной и кориолисовой сил инерции:

,

Сила инерции пластины будет равна:

Модули сил инерции равны

, , (2.2.2)

Изобразим активные силы, реакции опоры и силы инерции, действующие на механическую систему (рис. 4). Векторные уравнения кинетостатики (2.2.1) в проекциях на оси неподвижной системы координат OX1 Y1 имеют вид

(2.2.3)

C учётом выражений для сил инерции (2.2.2), уравнения (2.2.3) принимают вид

Найденные уравнения реакций шарнира и вращательного момента совпадают с теми, что были найдены в предыдущих частях курсовой работы.


3. Поведения системы в условиях малых колебаний

3.1 Положения равновесия механической системы и их устойчивость

Для определения положения равновесия механической системы воспользуемся выражением для потенциальной энергии системы, которое было выведено нами во втором разделе курсовой работы (см. п. 4):

(3.1.1)

К-во Просмотров: 336
Бесплатно скачать Курсовая работа: Дифференциальное уравнение относительного движения механической системы