Курсовая работа: Дифференциальное уравнение относительного движения механической системы
При этом мы учли, что
Рис.3 Определение вращательного момента
Применим теорему об изменении кинетического момента для определения внешнего момента, обеспечивающего равномерное движение ведущего звена механической системы. Выберем за ось z ось вращения:
. (1.3.1)
Определим кинетический момент рассматриваемой системы относительно оси Oz .
,
где - осевой момент инерции пластины, -угловая скорость вращения.
Шарик М совершает сложное движение- относительное вдоль желоба пластины(см. рис.3) со скоростью и переносное вместе с пластиной. Переносная скорость перпендикулярна пластине и по модулю равна:
,
где
Кинетический момент шарика относительно оси z равен
,
Кинетический момент всей системы равен
(1.3.2)
Определим главный момент внешних сил относительно оси z. Реакции опор пересекают ось вращения и момент относительно этой оси не создают. Определим момент силы тяжести шарика и пластины:
Отсюда имеем:
, (1.3.3)
где Mвр. - внешний момент, обеспечивающий равномерное вращение пластины.
Подставляя 1.3.2, 1.3.3 в уравнение теоремы об изменении кинетического момента системы 1.3.1, получаем
.
Учитывая, что ω=const получим:
2. Поведение системы в конкретных условиях
2.1 Дифференциальные уравнения движения системы и их интегрирование
Составим уравнения движения с помощью уравнений Лагранжа 2-го рода. В выбранных обобщенных координатах и они принимают вид: