Курсовая работа: Дифференцирование в линейных нормированных пространствах

Оглавление

Введение

Основные понятия

Сильный дифференциал (дифференциал Фреше)

Слабый дифференциал (дифференциал Гато)

Формула конечных приращений

Связь между слабой и сильной дифференцируемостью

Дифференцируемые функционалы

Абстрактные функции

Интеграл

Производные высших порядков

Дифференциалы высших порядков

Формула Тейлора

Заключение1

Список литературы:


Введение

Функциональный анализ — разделматематики, в котором изучаются бесконечномерные пространства и их отображения.

Понятие нормированного пространства – одно из самых основных понятий функционального анализа. Теория нормированных пространств была построена, главным образом, С. Банахом в 20-х годах 20 века. Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит дифференцирование линейных нормированных пространств.


Основные понятия

Определение 1. Непустое множество называется линейным пространством, если оно удовлетворяет следующим условиям:

Й. Для любых двух элементов однозначно определен элемент , называемый их суммой, причем

1. (коммутативность)

2. (ассоциативность)

В существует такой элемент 0, что для всех

4. Для каждого существует такой элемент , что .

II. Для любого числа и любого элемента определен элемент , причем

5.

6.

III. Операции сложения и умножения связаны между собой дистрибутивными законами:

7.

8.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 346
Бесплатно скачать Курсовая работа: Дифференцирование в линейных нормированных пространствах