Курсовая работа: Дифференцирование в линейных нормированных пространствах
Мы говорим, что задано билинейное отображение пространства X в пространство У, если каждой упорядоченной паре элементов х, х' из X поставлен в соответствие элемент у=В(х, х') У так, что выполнены следующие условия:
1. для любых из X и любых чисел имеют место равенства:
В (x1 + х2 , ) =В (,)+В (х2 , ),
В (x1 , +) = В (,)+В(x1, );
2. существует такое положительное число М, что
||В(х, х') || M||x||||x’|| (17)
при всех х, х'X.
Первое из этих условий означает, что отображение В линейно по каждому из двух своих аргументов; нетрудно показать, что второе условие равносильно непрерывности В по совокупности аргументов.
Наименьшее из чисел М, удовлетворяющих условию (17), называется нормой билинейного отображения В и обозначается ||В||.
Линейные операции над билинейными отображениями определяются обычным способом и обладают обычными свойствами.
Таким образом, билинейные отображения пространства X в пространство У сами образуют линейное нормированное пространство, которое мы обозначим В(Х2 , У). При полноте У полно и В(Х2 , У).
Каждому элементу А из пространства о(Х,о(Х,У)) можно поставить в соответствие элемент из В(Х2 , У), положив
В(х, х') = (Ах)х'.(18)
Очевидно, что это соответствие линейно. Покажем, что оно также и изометрично и отображает пространство о(X,о(Х,У)) на все пространство B(X2 ,Y).Действительно, если у=В(х, х') = (Ах)х', то
||y||||Ax||||x’||||A||||x||||x’||,
откуда
||B||||A||(19)
С другой стороны, если задано билинейное отображение В, то при фиксированном xX отображение
х'→ (Ах)х' = В(х, х')
есть линейное отображение пространства X в У.
Таким образом, каждому xX ставится в соответствие элемент Ах пространства о(X,У); очевидно, что Ах линейно зависит от х, т. е. билинейное отображение В определяет некоторый элемент А пространства о(Х, о(Х, У)). При этом ясно, что отображение В восстанавливается по А при помощи формулы (18) и
||Ах||= ||(Ax)x'||= ||В(х,x') ||B||||x||,
Откуда
||A||||B||(20)
Сопоставляя (19) и (20), получаем||A|| = ||В||. Итак, соответствие между B(X2 ,Y)и о{X, о(X,Y)), определяемое равенством (18), линейно и изометрично, а следовательно, взаимно однозначно. При этом образ пространства о(Х, о(Х, У)) есть все В(Х2 , У).
Мы выяснили, что вторая производная F"(x)есть элемент пространства о(X, о (X, У)). В соответствии с только что сказанным мы можем считать F"(x)элементом пространства В(Х2 , Y).
Очевидным образом можно ввести понятие третьей, четвертой и вообще п-й производной отображения F,действующего из X в Y,определив п-ю производную как производную от производной (п—1)-го порядка. При этом, очевидно, п-я производная представляет собой элемент пространства о(Х, о(Х, ..., о(X, У))). Повторяя рассуждения, проведенные для второй производной, можно каждому элементу этого пространства естественным образом поставить в соответствие элемент пространства N(Хп , У) n-линейных отображений X в У.
При этом под n-линейным отображением понимается такое соответствие y=N(x', х", ...,x( n ) ) между упорядоченными системами (х', х", .. . , x( n ) ) элементов из X и элементами пространства У, которое линейно по каждому из хi при фиксированных остальных элементах и удовлетворяет при некотором М > 0 условию
|| N (x', х", ..., x( n ) ) ||М || х' || • || х" || ... || x( n ) ||.