Курсовая работа: Дослідження методу ортогоналізації й методу сполучених градієнтів
Множачи обидві частини рівності (1) на й використовуючи подання через , як і раніше, одержимо:
. (13)
Знову вийшла система лінійних алгебраїчних рівнянь із трикутною матрицею для визначення . Трохи ускладнивши обчислення можна одержати систему діагонального виду. Для цього побудуємо три системи векторів , так що мають місце рівності:
(14)
(15)
(16)
Тоді
, (17)
тому що при i<r
(18)
і при i>r
(19)
Таким чином,
(20)
Зупинимося докладніше на першому з описаних методів. Розглянемо випадок, коли матриця А симетрична й позитивно певна. Останнє означає, що для будь-якого вектора квадратична форма його компонент більше або дорівнює нулю, причому рівність нулю можливо в тім і тільки тім випадку, якщо вектор нульової. Як ми бачили раніше, потрібно побудувати систему векторів , що задовольняють умовам
=0 . (21)
Це побудова можна здійснити в такий спосіб. Виходимо з якоїсь системи лінійно незалежних векторів , наприклад із системи одиничних векторів, спрямованих по координатних осях:
(22)
Далі проводимо «ортогоналізацію». Приймаємо й шукаємо у вигляді
. (23)
З умови знаходимо:
(24)
Шукаємо у вигляді
. (25)
Умови спричиняють
(26)
Далі надходимо також.
Процес буде здійсненний, тому що все . Це ж забезпечить нам можливість розв'язання системи для визначення коефіцієнтів . Помітимо, що в нашім випадку це буде процес справжньої ортогоналізації, якщо в просторі векторів увести новий скалярний добуток за допомогою співвідношення
. (26)
Неважко перевірити, що уведене таким способом скалярний добуток буде задовольняти всім вимогам, які до нього пред'являються.