Курсовая работа: Дослідження методу ортогоналізації й методу сполучених градієнтів

Введення

До рішення систем лінійних алгебраїчних рівнянь приводяться багато задач чисельного аналізу.

Відоме з курсу вищої алгебри правило Крамера для рішення систем лінійних алгебраїчних рівнянь практично невигідно, тому що вимагає занадто великої кількості арифметичних операцій і записів. Тому було запропоновано багато різних способів, більше придатних для практики.

Використовувані практично методи рішення систем лінійних алгебраїчних рівнянь можна розділити на дві більші групи: так звані точні методи й методи послідовних наближень. Точні методи характеризуються тим, що з їхньою допомогою принципово можливо, проробивши кінцеве число операцій, одержати точні значення невідомих. При цьому, звичайно, передбачається, що коефіцієнти й праві частини системи відомі точно, а всі обчислення виробляються без округлень. Найчастіше вони здійснюються у два етапи. На першому етапі перетворять систему до того або іншого простого виду. На другому етапі вирішують спрощену систему й одержують значення невідомих.

Методи послідовних наближень характеризуються тим, що із самого початку задаються якимись наближеними значеннями невідомих. Із цих наближених значень тим або іншому способу одержують нові «поліпшені» наближені значення. З новими наближеними значеннями надходять точно також і т.д. Розглянемо два точних методи: метод ортогоналізації й метод сполучених градієнтів.


1. Метод ортогоналізації

1.1 Метод ортогоналізації у випадку симетричної матриці

Нехай дана система

(1)

порядку n. Щоб уникнути надалі плутанини, над векторами поставимо риски. Рішення системи будемо розшукувати у вигляді

, (2)

де – n векторів, що задовольняють умовам

при (3)

Тут розглядається звичайний скалярний добуток векторів в n-мірному векторному просторі, тобто якщо й , те . Нехай такі вектори знайдені. Як це робиться, буде показано нижче. Розглянемо скалярний добуток обох частин системи (1) з

(4)

Використовуючи (2) одержимо:


(5)

або, у силу вибору векторів ,

. (6)

Отже, для визначення коефіцієнтів одержали систему із трикутною матрицею. Визначник цієї системи дорівнює

. (7)

Отже, якщо , те можливо знайти й перебувають вони без праці.

Особливо легко визначаться , якщо матриця А симетрична. У цьому випадку, мабуть,

(8)

і, отже,

=0 при . (9)

Тоді система для визначення прийме вид

(10)


. (11)

Метод можна узагальнити. Нехай якимсь образом удалося знайти систему 2n векторів так, що

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 310
Бесплатно скачать Курсовая работа: Дослідження методу ортогоналізації й методу сполучених градієнтів