Курсовая работа: Дослідження методу ортогоналізації й методу сполучених градієнтів

(40)

Процес буде здійсненний, якщо система рівнянь лінійно незалежна. У результаті ми прийдемо до нової системи , де матриця З буде ортогональної, тобто має властивість СС¢=I.

Таким чином, рішення системи можна записати у вигляді

. (41)

Практично, внаслідок помилок округлення, СС¢ буде відмінна від одиничної матриці й може виявитися доцільним зробити кілька ітерацій для системи .

2. Метод сполучених градієнтів

2.1 Перший алгоритм методу

Нехай потрібно вирішити систему лінійних алгебраїчних рівнянь

(1)

с позитивно певною матрицею A порядку n.

Розглянемо функціонала

, (2)

багаточлен, що представляє, другого порядку відносно x 1, x 2…, xn ,… Позначимо через рішення системи (1), тобто . У силу симетричності й позитивної визначеності матриці, маємо:

При цьому знак рівності можливий лише при . Таким чином, задача рішення рівняння (1) зводиться до задачі відшукання вектора , що обертає в мінімум функціонал (2).

Для відшукання такого вектора застосуємо наступний метод.

Нехай – довільний початковий вектор, а

(4)


– вектор не в'язань системи. Покажемо, що вектор не в'язань має напрямок нормалі до поверхні в крапці . Справді, напрямок нормалі збігається з напрямком найшвидшої зміни функції в крапці . Це напрямок ми знайдемо, якщо знайдемо серед векторів , для яких , такий вектор, що

має найбільше значення. Але

Але серед векторів постійний довжини досягає максимального значення, якщо має напрямок вектора або йому протилежне. Твердження доведене. Будемо рухатися із крапки в напрямку вектора доти, поки функція досягає мінімального значення. Це буде при , тобто при

. (5)


Вектор

(6)

і приймаємо за нове наближення до рішення.

У методі сполучених градієнтів наступне наближення перебуває так. Через крапку проведемо гіперплощину (n-1) – го виміру

(7)

К-во Просмотров: 311
Бесплатно скачать Курсовая работа: Дослідження методу ортогоналізації й методу сполучених градієнтів