Курсовая работа: Економічні задачі лінійного програмування і методи їх вирішення
1.2 ПРИКЛАДИ ЕКОНОМІЧНИХ ЗАДАЧ лінійного програмування
1.2.1 Задача оптимального виробничого планування
Для виготовлення n видів продукції P1, ..., Pn використовується m видів сировини S1, ..., Sm, запаси якого обмежені і становлять відповідно b1, ..., bm одиниць. Відомо, що на виробництво одиниці продукції Pj (j =) витрачається аij одиниць ресурсу Si (i =, а прибуток від реалізації одиниці продукції Pj (j=) становить сj (j =.)
Потрібно визначити план виробництва, який дозволяє при готівкових ресурсах отримати максимальний прибуток підприємства від реалізації продукції [15].
Перш за все, запишемо умови задачі компактно у вигляді таблиці:
Таблиця 1.
Вид продукції Вид сировини | Р1 | ... | Pj | ... | Pn |
Запас ресурсу |
S1 | a11 | ... | a1j | ... | a1n | b1 |
... | ... | ... | ... | ... | ... | ... |
Si | ai1 | ... | aij | ... | ain | bi |
... | ... | ... | ... | ... | ... | ... |
Sm | am1 | ... | amj | ... | amn | bm |
Прибуток | c1 | … | cj | … | cn |
Складемо математичну модель задачі.
Позначимо через xj (j =) плановане до випуску кількість продукції Рj (j=), а через Z (х1, ..., xn) – прибуток підприємства від реалізації всієї продукції. Тоді планом виробництва буде вектор Х = (х1, ..., хn), що показує, яку кількість продукції кожного виду буде вироблено. Змінні х1, ..., хn – керовані змінні. Мета рішення задачі (критерій оптимальності) – максимізувати прибуток:
Z = c1x1 + c2x2 +. . . + cnxn .
Сумарні витрати ресурсу Si (i = складають:
.
У силу обмеженості ресурсу Si величиною bi отримаємо систему обмежень:
.
На змінні хj повинна бути накладена умова невід’ємності
тобто продукція Рj або може випускатися (xj > 0), або не випускатися (xj = 0).
Отже, математична модель буде мати вид:
,
.
1.2.2 Задача про суміші
Задача визначення оптимального складу суміші виникає тоді, коли з наявних видів сировини шляхом їх змішування необхідно отримати кінцевий продукт із заданими властивостями. До цієї групи завдань відносяться, наприклад, завдання отримання сумішей для різних марок бензину в нафтопереробній промисловості, сумішей для отримання бетону в будівництві, завдання про вибір дієти, складання кормового раціону в тваринництві та інше. При цьому потрібно, щоб вартість такої суміші була мінімальною.
Нехай є m видів сировини, запаси якого становлять відповідно d1, ..., dm. З цієї сировини необхідно скласти суміш, яка містить n речовин, що визначають технічні характеристики суміші. Відомі величини визначають -кількість j-ї речовини в одиниці-го виду сировини, ціна якого дорівнює а також найменший допустимий кількість j-ї речовини в суміші.
Потрібно забрати суміш із заданими властивостями при найменших витратах на вихідні сировинні матеріали.
Для складання математичної моделі запишемо умови задачі у вигляді таблиці: