Курсовая работа: Економічні задачі лінійного програмування і методи їх вирішення

. (9)

Оскільки xi (θ) при θ = 0 визначають план задачі, то найбільше θ, яке не порушує обмеження xi (θ) ≥ 0, визначається із умови

. (10)

де I = {i | xik > 0}.

В силу невиродженості задачі мінімум досягається не більш ніж для одного i = J та θ > 0. Значення лінійної форми при θ = θ0 визначається із рівнянь (9), (4), (2)

,

де Δk = zk — ck . Очевидно, Δj = 0 для j = 1, …, m.

Нехай — початковий базис із m одиничних векторів. Всі дані задачі записуються у вигляді симплекс-таблиці (першої ітерації обчислювального процесу). Симплекс-алгоритм розв'язання задачі лінійного програмування складається із наступних операцій:

1. знайти Δk = minj Δj . Якщо Δk = 0, тоді план, який розглядається оптимізовано; якщо Δk < 0, вектор Ak вводиться в базис;

2. знайти θ0 та l, для якого , із формули (10). Якщо I = Λ — порожня множина, лінійна форма необмежена зверху; якщо I ≠ Λ вектор Al виводиться із базису;

3. за знайденими l, k обчислити нові значення елементів таблиці за формулами

4.

(12)

,


де та перейти до виконання операції (1) з новими значеннями всіх xij = x'ij .

Перетворення (12) замінює вектор коефіцієнтів Xk = (x1k , …, xmk ) на одиничний вектор Xk з xlk = 1. В силу монотонного збільшення x0 повернення до вже пройденого плану неможливе, а із скінченності кількості опорних планів випливає скінченність алгоритму.

Початковий опорний план з одиничним базисом можна отримати, розв'язавши описаним алгоритмом допоміжну задачу

,

при обмеженнях

;

,

яка містить одиничний базис, який складається із векторів An+1 , …, An+m . Цим векторам відповідають штучні змінні із значеннями , i = 1, …, m. Якщо в оптимальному розв'язку цієї задачі , вихідна задача не має розв'язку. Якщо ж та задача невироджена, оптимальний базис складається лише тільки із векторів вихідної задачі, які за формулами (12) перетворені в одиничну матрицю. Якщо задача має невироджені плани, значення z0 може не збільшуватись на ряді ітерацій. Це відбувається через те, що значення відповідних дорівнює нулю та визначається неоднозначно. В таких випадках монотонність методу порушується і може трапитись зациклювання, тобто, повернення до вже пройденого базису. Невелика зміна вектора обмежень задачі, яка полягає в заміні величин bi на bi + εi , де εi достатньо малі, при вдалому виборі εi не змінюють множину векторів оптимального опорного плану вихідної задачі і робить її невиродженою.

Описаний вище алгоритм називається першим (або прямим) алгоритмом симплекс-методу. Також відомий другий алгоритм (алгоритм із оберненою матрицею). В ньому перетворюється лише матриця A-1 , обернена до базисної матриці.


3. Прикладний розділ

3.1 Вирішення задачі лінійного програмування симплекс-методом

Для розробки математичної моделі задачі позначимо:

x1 – кількість продукту А;

x2 – кількість продукту В;

К-во Просмотров: 380
Бесплатно скачать Курсовая работа: Економічні задачі лінійного програмування і методи їх вирішення