Курсовая работа: Исследование рычажного и зубчатого механизмов
W=3*3-2*4=1
Степень подвижности механизма равна 1, что свидетельствует о наличии только одного входного звена (звено 1). Если этому звену задать движение с некоторой угловой скоростью, то все остальные звенья механизма будут совершать строго определенные движения.
1.1.3 Структурный анализ на уровне групп Ассура
Исходный механизм I (0;1):n=1; р5 =1
Определить степень подвижности W=3n-2p
W=3*1-2*1=1
Рисунок 2- Исходный механизм
Вывод: Так как степень подвижности равна 1, следовательно, это исходный механизм.
Группа Ассура второго класса, второго вида II2 (2;3): n=2; p5 =3.
Определить степень подвижности W=3n-2p
W=3*2-2*3=0
Рисунок 3- Группы Ассура
Вывод: Так как степень подвижности равна 0, следовательно, это группа Асура. Формула механизма: I (0; 1) II2 (2; 3)
Вывод: Механизм является механизмом второго класса, так как наивысший класс группы Ассура равен II.
1.2 Кинематический анализ механизма (лист 1)
Задачи кинематики:
1. Задача положения состоит в определении функции положения;
2. Задача о скоростях, заключается в отыскании аналогов линейных и угловых скоростей;
3. Задача положения, аналога скорости и аналога ускорения центра масс каждого звена;
4. Задача углового положения, аналогов угловой скорости и углового ускорения звеньев;
5. Определение крайних положений механизма и величины хода выходного звена.
1.2.1 Анализ движения исходного механизма I (0,1)
Рисунок 4-Входное звено
Принимаем угол Ψ = 30о
Ψ=30о =0.5235 рад
Cos 30=0.8660 рад