Курсовая работа: Конгруэнции Фраттини универсальных алгебр
Определение 1.4 Всякое подмножество называется бинарным отношением на .
Определение 1.5 Бинарное отношение называется эквивалентностью , если оно:
• рефлексивно
• транзитивно и
• симметрично
Определение 1.6 Пусть некоторая эквивалентность на , тогда через обозначают множество . Такое множество называют класс разбиения по эквивалентности содержащий элемент . Множество всех таких классов разбиения обозначают через и называют фактормножеством множества по эквивалентности .
Определим -арную операцию на фактормножестве следующим образом:
Определение 1.7 Эквивалентность на алгебре называется ее конгруэнцией на , если выполняется следующее условие:
Для любой операции для любых элементов таких, что имеет место .
Определение 1.8 Если и --- конгруэнции на алгебре , , то конгруэнцию на алгебре назовем фактором на .
тогда и только тогда, когда .
или или 1 --- соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .
Лемма 1.1 (Цорна). Если любая цепь частично упорядоченного множества содержит максимальные элементы, то и само множество содержит максимальные элементы.
Определение 1.9 Пусть --- бинарное отношение на множестве . Это отношение называют частичным порядком на , если оно рефлексивно, транзитивно, антисимметрично.
Определение 1.10 Множество с заданным на нем частичным порядком называют частично упорядоченным множеством .
Теорема Мальцев А.И. Конгруэнции на универсальной алгебре перестановочны тогда и только тогда, когда существует такой тернарный оператор , что для любых элементов выполняется равенство . В этом случае оператор называется мальцевским.
Определение 1.11 Алгебра называется нильпотентной , если существует такой ряд конгруэнций , называемый центральным , что для любого .
Определение 1.12 Подалгебра алгебры называется собственной , если она отлична от самой алгебры .