Курсовая работа: Конгруэнции Фраттини универсальных алгебр

Определение 1.13 Подалгебра универсальной алгебры называется нормальной в , если является смежным классом по некоторой конгруэнции алгебры .

Определение 1.14 Пусть и --- универсальные алгебры с одной и той же сигнатурой, отображение называется гомоморфизмом , если

1) и имеет место ;

2) , где и элементы фиксируемой операцией в алгебрах и соответственно.

Определение 1.15 Гомоморфизм называется изоморфизмом между и , если обратное к нему соответствие также является гомоморфизмом.

Теорема Первая теорема об изоморфизмах Пусть - гомоморфизм, --- конгруэнция, тогда .

Теорема Вторая теорема об изоморфизмах Пусть --- есть -алгебра, --- подалгебра алгебры и --- конгруэнция на . Тогда является подалгеброй алгебры , --- конгруэнцией на и .

Теорема Третья теорема об изоморфизмах Пусть --- есть -алгебра и и --- такие конгруэнции на , что . Тогда существует такой единственный гомоморфизм , что . Если , то является конгруэнцией на и индуцирует такой изоморфизм .

2. Свойства централизаторов конгруэнции универсальных алгебр

Определение 2.1 Пусть и --- конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:

1) из

всегда следует

2) для любого элемента

всегда выполняется

3) если

то

Под термином "алгебра" в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие .

Следующие свойства централизуемости, полученные Смитом , сформулируем в виде леммы.

Лемма 2.1 Пусть . Тогда:

1) существует единственная конгруэнция , удовлетворяющая определению 2.1;

2) ;

3) если

то

Из леммы 2.1. и леммы Цорна следует, что для произвольной конгруэнции на алгебре всегда существует наибольшая конгруэнция, централизующая . Она называется централизатором конгруэнции в и обозначается .

В частности, если , то централизатор в будем обозначать .

Лемма 2.2 Пусть , --- конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

1) ;

К-во Просмотров: 327
Бесплатно скачать Курсовая работа: Конгруэнции Фраттини универсальных алгебр