Курсовая работа: Конгруэнции Фраттини универсальных алгебр
По лемме 2.5 , а по определению
Следовательно,
3) Очевидно, достаточно показать, что для любых двух конгруэнции и на алгебре имеет место равенство
Покажем вналале, что
Обозначим . Тогда, согласно определению 2.1. на алгебре существует такая конгруэнция , что выполняются следующие свойства:
а) если , то
б) для любого элемента ,
в) если
то
Построим бинарное отношение на алгебре следующим образом:
тогда и только тогда, когда
и
Покажем, что --- конгруэнция на .
Пусть
для . Тогда
и
Так как --- конгруэнция, то для любой -арной операции имеем
Очевидно, что
и
Следовательно,
Очевидно, что для любой пары
Значит,
Итак, по лемме 2.3, - конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, то есть централизует . Пусть
Тогда
Так как , и , то . Следовательно, удовлетворяет определению 2.1.
Если , то
значит,
Пусть, наконец, имеет место (1) и
Тогда