Курсовая работа: Конгруэнции Фраттини универсальных алгебр

По лемме 2.5 , а по определению

Следовательно,

3) Очевидно, достаточно показать, что для любых двух конгруэнции и на алгебре имеет место равенство

Покажем вналале, что

Обозначим . Тогда, согласно определению 2.1. на алгебре существует такая конгруэнция , что выполняются следующие свойства:

а) если , то

б) для любого элемента ,

в) если

то

Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда

и

Покажем, что --- конгруэнция на .

Пусть

для . Тогда

и

Так как --- конгруэнция, то для любой -арной операции имеем

Очевидно, что

и

Следовательно,

Очевидно, что для любой пары

Значит,

Итак, по лемме 2.3, - конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, то есть централизует . Пусть

Тогда

Так как , и , то . Следовательно, удовлетворяет определению 2.1.

Если , то

значит,

Пусть, наконец, имеет место (1) и

Тогда

К-во Просмотров: 323
Бесплатно скачать Курсовая работа: Конгруэнции Фраттини универсальных алгебр